Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587198

ABSTRACT

According to the Principle of Minimal Frustration, folded proteins can only have a minimal number of strong energetic conflicts in their native states. However, not all interactions are energetically optimized for folding but some remain in energetic conflict, i.e. they are highly frustrated. This remaining local energetic frustration has been shown to be statistically correlated with distinct functional aspects such as protein-protein interaction sites, allosterism and catalysis. Fuelled by the recent breakthroughs in efficient protein structure prediction that have made available good quality models for most proteins, we have developed a strategy to calculate local energetic frustration within large protein families and quantify its conservation over evolutionary time. Based on this evolutionary information we can identify how stability and functional constraints have appeared at the common ancestor of the family and have been maintained over the course of evolution. Here, we present FrustraEvo, a web server tool to calculate and quantify the conservation of local energetic frustration in protein families.

2.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38565273

ABSTRACT

MOTIVATION: The interpretation of genomic data is crucial to understand the molecular mechanisms of biological processes. Protein structures play a vital role in facilitating this interpretation by providing functional context to genetic coding variants. However, mapping genes to proteins is a tedious and error-prone task due to inconsistencies in data formats. Over the past two decades, numerous tools and databases have been developed to automatically map annotated positions and variants to protein structures. However, most of these tools are web-based and not well-suited for large-scale genomic data analysis. RESULTS: To address this issue, we introduce 3Dmapper, a stand-alone command-line tool developed in Python and R. It systematically maps annotated protein positions and variants to protein structures, providing a solution that is both efficient and reliable. AVAILABILITY AND IMPLEMENTATION: https://github.com/vicruiser/3Dmapper.


Subject(s)
Biological Specimen Banks , Software , Proteins/chemistry , Genomics
3.
Nat Commun ; 14(1): 8379, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104123

ABSTRACT

Energetic local frustration offers a biophysical perspective to interpret the effects of sequence variability on protein families. Here we present a methodology to analyze local frustration patterns within protein families and superfamilies that allows us to uncover constraints related to stability and function, and identify differential frustration patterns in families with a common ancestry. We analyze these signals in very well studied protein families such as PDZ, SH3, ɑ and ß globins and RAS families. Recent advances in protein structure prediction make it possible to analyze a vast majority of the protein space. An automatic and unsupervised proteome-wide analysis on the SARS-CoV-2 virus demonstrates the potential of our approach to enhance our understanding of the natural phenotypic diversity of protein families beyond single protein instances. We apply our method to modify biophysical properties of natural proteins based on their family properties, as well as perform unsupervised analysis of large datasets to shed light on the physicochemical signatures of poorly characterized proteins such as the ones belonging to emergent pathogens.


Subject(s)
Proteins , Proteins/metabolism
4.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37582357

ABSTRACT

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Subject(s)
Neoplasms , Proteogenomics , Humans , Neoplasms/genetics , Oncogenes , Cell Transformation, Neoplastic/genetics , DNA Copy Number Variations
5.
PLoS Comput Biol ; 18(1): e1009818, 2022 01.
Article in English | MEDLINE | ID: mdl-35073311

ABSTRACT

The protein structure field is experiencing a revolution. From the increased throughput of techniques to determine experimental structures, to developments such as cryo-EM that allow us to find the structures of large protein complexes or, more recently, the development of artificial intelligence tools, such as AlphaFold, that can predict with high accuracy the folding of proteins for which the availability of homology templates is limited. Here we quantify the effect of the recently released AlphaFold database of protein structural models in our knowledge on human proteins. Our results indicate that our current baseline for structural coverage of 48%, considering experimentally-derived or template-based homology models, elevates up to 76% when including AlphaFold predictions. At the same time the fraction of dark proteome is reduced from 26% to just 10% when AlphaFold models are considered. Furthermore, although the coverage of disease-associated genes and mutations was near complete before AlphaFold release (69% of Clinvar pathogenic mutations and 88% of oncogenic mutations), AlphaFold models still provide an additional coverage of 3% to 13% of these critically important sets of biomedical genes and mutations. Finally, we show how the contribution of AlphaFold models to the structural coverage of non-human organisms, including important pathogenic bacteria, is significantly larger than that of the human proteome. Overall, our results show that the sequence-structure gap of human proteins has almost disappeared, an outstanding success of direct consequences for the knowledge on the human genome and the derived medical applications.


Subject(s)
Protein Folding , Proteome , Proteomics/methods , Humans , Models, Molecular , Proteome/analysis , Proteome/chemistry , Proteome/metabolism
6.
Proteins ; 89(12): 1888-1900, 2021 12.
Article in English | MEDLINE | ID: mdl-34595772

ABSTRACT

We present the results of the assessment of the intramolecular residue-residue contact and distance predictions from groups participating in the 14th round of the CASP experiment. The performance of contact prediction methods was evaluated with the measures used in previous CASPs, while distance predictions were assessed based on a new protocol, which considers individual distance pairs as well as the whole predicted distance matrix, using a graph-based framework. The results of the evaluation indicate that predictions by the tFold framework, TripletRes and DeepPotential were the most accurate in both categories. With regards to progress in method performance, the results of the assessment in contact prediction did not reveal any discernible difference when compared to CASP13. Arguably, this could be due to CASP14 FM targets being more challenging than ever before.


Subject(s)
Amino Acid Sequence , Models, Molecular , Protein Conformation , Proteins , Software , Computational Biology , Proteins/chemistry , Proteins/metabolism , Reproducibility of Results , Sequence Analysis, Protein
7.
Comput Struct Biotechnol J ; 19: 759-766, 2021.
Article in English | MEDLINE | ID: mdl-33456724

ABSTRACT

The recent emergence of the novel SARS-CoV-2 in China and its rapid spread in the human population has led to a public health crisis worldwide. Like in SARS-CoV, horseshoe bats currently represent the most likely candidate animal source for SARS-CoV-2. Yet, the specific mechanisms of cross-species transmission and adaptation to the human host remain unknown. Here we show that the unsupervised analysis of conservation patterns across the ß-CoV spike protein family, using sequence information alone, can provide valuable insights on the molecular basis of the specificity of ß-CoVs to different host cell receptors. More precisely, our results indicate that host cell receptor usage is encoded in the amino acid sequences of different CoV spike proteins in the form of a set of specificity determining positions (SDPs). Furthermore, by integrating structural data, in silico mutagenesis and coevolution analysis we could elucidate the role of SDPs in mediating ACE2 binding across the Sarbecovirus lineage, either by engaging the receptor through direct intermolecular interactions or by affecting the local environment of the receptor binding motif. Finally, by the analysis of coevolving mutations across a paired MSA we were able to identify key intermolecular contacts occurring at the spike-ACE2 interface. These results show that effective mining of the evolutionary records held in the sequence of the spike protein family can help tracing the molecular mechanisms behind the evolution and host-receptor adaptation of circulating and future novel ß-CoVs.

SELECTION OF CITATIONS
SEARCH DETAIL
...