Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Histochem Cell Biol ; 155(1): 117-132, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33130914

ABSTRACT

The role of cardiac tissue macrophages (cTMs) during pre- and postnatal developmental stages remains in many aspects unknown. We aimed to characterize cTM populations and their potential functions based on surface markers. Our in situ studies of immunostained cardiac tissue specimens of murine fetuses (from E11to E17) revealed that a significant number of embryonic cTMs (phenotyped by CD45, CD68, CD64, F4/80, CD11b, CD206, Lyve-1) resided mostly in the subepicardial space, not in the entire myocardial wall, as observed in adult individuals. cTMs accompanied newly developed blood and lymphatic vessels adhering to vessel walls by cellular processes. A subpopulation of CD68-positive cells was found to form accumulations in areas of massive apoptosis during the outflow tract remodeling and shortening. Flow cytometry analysis at E14 and E17 stages revealed newly defined three subpopulations:CD64low, CD64highCD206-and CD64highCD206+. The levels of mRNA expression for genes related to regulation of angiogenesis (VEGFa, VEGFb, VEGFc, bFGF), lymphangiogenesis (VEGFc) and extracellular matrix (ECM) remodeling (MMP13, Arg1, Ym1/Chil3, Retlna/FIZZ1) differed among the selected populations and/or embryonic stages. Our results demonstrate a diversity of embryonic cTMs and their tissue-specific locations, suggesting their various potential roles in regulating angiogenesis, lymphangiogenesis and ECM remodeling.


Subject(s)
Extracellular Matrix/metabolism , Lymphangiogenesis , Macrophages/metabolism , Models, Biological , Myocardium/metabolism , Neovascularization, Physiologic , Animals , Fetal Development , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Myocardium/cytology
2.
Cells ; 9(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32629962

ABSTRACT

The successful implementation of adipose-derived mesenchymal stem cells (ADSCs) in bone regeneration depends on efficient osteogenic differentiation. However, a literature survey and our own experience demonstrated that current differentiation methods are not effective enough. Since the differentiation of mesenchymal stem cells (MSCs) into osteoblasts and adipocytes can be regulated by cyclic adenosine monophosphate (cAMP) signaling, we investigated the effects of cAMP activator, forskolin, and inhibitor, SQ 22,536, on the early and late osteogenic differentiation of ADSCs cultured in spheroids or in a monolayer. Intracellular cAMP concentration, protein kinase A (PKA) activity, and inhibitor of DNA binding 2 (ID2) expression examination confirmed cAMP up- and downregulation. cAMP upregulation inhibited the cell cycle and protected ADSCs from osteogenic medium (OM)-induced apoptosis. Surprisingly, the upregulation of cAMP level at the early stages of osteogenic differentiation downregulated the expression of osteogenic markers RUNX2, Osterix, and IBSP, which was more significant in spheroids, and it is used for the more efficient commitment of ADSCs into preosteoblasts, according to the previously reported protocol. However, cAMP upregulation in a culture of ADSCs in spheroids resulted in significantly increased osteocalcin production and mineralization. Thus, undifferentiated and predifferentiated ADSCs respond differently to cAMP pathway stimulation in terms of osteogenesis, which might explain the ambiguous results from the literature.


Subject(s)
Adipose Tissue/cytology , Cell Differentiation , Cyclic AMP/metabolism , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Signal Transduction , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/metabolism , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteocalcin/genetics , Osteocalcin/metabolism , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Up-Regulation
3.
J Tissue Eng Regen Med ; 12(1): e473-e485, 2018 01.
Article in English | MEDLINE | ID: mdl-27599449

ABSTRACT

The capacity of bone grafts to repair critical size defects can be greatly enhanced by the delivery of mesenchymal stem cells (MSCs). Adipose tissue is considered the most effective source of MSCs (ADSCs); however, the efficiency of bone regeneration using undifferentiated ADSCs is low. Therefore, this study proposes scaffolds based on polycaprolactone (PCL), which is widely considered a suitable MSC delivery system, were used as a three-dimensional (3D) culture environment promoting osteogenic differentiation of ADSCs. PCL scaffolds enriched with 5% tricalcium phosphate (TCP) were used. Human ADSCs were cultured in osteogenic medium both on the scaffolds and in 2D culture. Cell viability and osteogenic differentiation were tested at various time points for 42 days. The expression of RUNX2, collagen I, alkaline phosphatase, osteonectin and osteocalcin, measured by real-time polymerase chain reaction was significantly upregulated in 3D culture. Production of osteocalcin, a specific marker of terminally differentiated osteoblasts, was significantly higher in 3D cultures than in 2D cultures, as confirmed by western blot and immunostaining, and accompanied by earlier and enhanced mineralization. Subcutaneous implantation into immunodeficient mice was used for in vivo observations. Immunohistological and micro-computed tomography analysis revealed ADSC survival and activity toward extracellular production after 4 and 12 weeks, although heterotopic osteogenesis was not confirmed - probably resulting from insufficient availability of Ca/P ions. Additionally, TCP did not contribute to the upregulation of differentiation on the scaffolds in culture, and we postulate that the 3D architecture is a critical factor and provides a useful environment for prior-to-implantation osteogenic differentiation of ADSCs. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Adipose Tissue/cytology , Cell Differentiation/drug effects , Osteogenesis/drug effects , Polyesters/pharmacology , Printing, Three-Dimensional , Stem Cells/cytology , Tissue Scaffolds/chemistry , Animals , Calcification, Physiologic/drug effects , Calcium Phosphates/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Gene Expression Regulation/drug effects , Humans , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocalcin/metabolism , Phenotype , Prosthesis Implantation , Stem Cells/drug effects , Stem Cells/metabolism , X-Ray Microtomography
4.
Histochem Cell Biol ; 143(2): 153-69, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25201347

ABSTRACT

Vasculogenesis and hematopoiesis are co-localized in the embryonic body, but precise phenotypes of the cells contributing to these processes are not defined. The aim of this study was to characterize phenotypic profiles and location of putative vasculogenic and hematopoietic cellular progenitors in the embryonic mouse heart. Confocal microscopy, as well as ultrastructural and stereomicroscopic analyses, was performed on immunohistochemical whole-mount-stained or sectioned hearts at stages 11.5-14 dpc. A FASC analysis was conducted to quantify putative vasculogenic and hematopoietic cells. We found subepicardial blood islands in the form of foci of accumulation of cells belonging to erythroblastic and megakaryocytic lineages at various stages of maturation, exhibiting phenotypes: GATA2(+)/CD41(+), GATA2(-)/CD41(+), GATA2(+)/CD71(-), GATA2(-)/CD71(+), Fli1(+)/CD71(+), Fli1(-)/CD71(+), with a majority of cells expressing the Ter119 antigen, but none of them expressing Flk1. The subepicardium and the outflow tract endothelium were recognized to be the areas where progenitor cells were scattered or adjoining the endothelial cells. These progenitor cells were characterized as possessing the following antigens: CD45(+)/Fli1(+), CD41(+)/Flk1(+), Flk1(+)/Fli1(+). A FACS analysis demonstrated that the CD41/Flk1 double-positive population of cells constituted 2.68% of total cell population isolated from 12.5 dpc hearts. Vessels and tubules were positive for CD31, Flk1, Fli1, Tie2, including blood islands endothelia. The endocardial wall endothelia were found to function as an anchoring apparatus for megakaryocytes releasing platelets into the cardiac cavities. Phenotypic characteristics of vasculogenic (Flk1(+)/Fli1(+)) and hematopoietic (GATA2(+)/CD71(+), CD41(+)/GATA2(+)) progenitors, as well as the putative hemogenic endothelium (Flk1(+)/CD41(+)) in embryonic mouse hearts, have been presented. Cardiac blood islands, the subepicardium and endothelium of the outflow tract cushions have been defined as areas where these progenitor cells can be found.


Subject(s)
Heart/embryology , Myocardium/cytology , Stem Cells/physiology , Animals , Biomarkers/metabolism , Hematopoiesis , Immunohistochemistry , Leukocyte Common Antigens/metabolism , Mice , Microscopy, Electron, Transmission
5.
Biores Open Access ; 2(5): 356-63, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24083091

ABSTRACT

It is expected that use of adult multipotential mesenchymal stem cells (MSCs) for bone tissue engineering (TE) will lead to improvement of TE products. Prior to clinical application, biocompatibility of bone TE products need to be tested in vitro and in vivo. In orthopedic research, sheep are a well-accepted model due to similarities with humans and are assumed to be predictive of human outcomes. In this study we uncover differences between human and ovine bone marrow-derived MSCs (BMSCs) and adipose tissue-derived MSCs (ADSCs) in response to osteogenic media. Osteogenic differentiation of BMSCs and ADSCs was monitored by alkaline phosphatase (ALP) activity and calcium deposition. Mineralization of ovine BMSC was achieved in medium containing NaH2PO4 as a source of phosphate ions (Pi), but not in medium containing ß-glycerophosphate (ß-GP), which is most often used. In a detailed study we found no induction of ALP activity in ovine BMSCs and ADSCs upon osteogenic stimulation, which makes ß-GP an unsuitable source of phosphate ions for ovine cells. Moreover, mineralization of human ADSCs was more efficient in osteogenic medium containing NaH2PO4. These results indicate major differences between ovine and human MSCs and suggest that standard in vitro osteogenic differentiation techniques may not be suitable for all types of cells used in cell-based therapies. Since mineralization is a widely accepted marker of the osteogenic differentiation and maturation of cells in culture, it may lead to potentially misleading results and should be taken into account at the stage of planning and interpreting preclinical observations performed in animal models. We also present a cell culture protocol for ovine ADSCs, which do not express ALP activity and do not mineralize under routine pro-osteogenic conditions in vitro. We plan to apply it in preclinical experiments of bone tissue-engineered products performed in an ovine model.

6.
J Virol Methods ; 193(1): 28-41, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23684847

ABSTRACT

In order to reduce the time required for the development and production of viral vaccines, host cell lines should be available as expression systems for production of viral vaccines against groups of viral pathogens. A selection of cell lines was compared for their initial feasibility as expression system for the replication of polioviruses, influenza A viruses and respiratory syncytial virus (wild type strain A2). Six adherent cell lines (Vero, HEK-293, MRC-5, CHO-K1, BHK-21 c13, MDCK) and six single cell suspension cell lines (CAP, AGE1.CR.HS, sCHO-K1, BHK-21 c13 2p, MDCK SFS) were studied for their ability to propagate viruses. First, maximum cell densities were determined. Second, virus receptor expression and polarization of the cell lines regarding receptor distribution of eight different viruses were monitored using flow cytometry and immunocytochemistry. Organization of the actin cytoskeleton was studied by transfection of the cells with Lifeact™, a construct coding for actin-EGFP. Finally, the ability to produce virus progeny of the viruses studied was assayed for each cell line. The results suggest that single cell suspension cell lines grown on serum free medium are the best candidates to serve as host cell lines for virus replication.


Subject(s)
Technology, Pharmaceutical/methods , Viral Vaccines/isolation & purification , Animals , Cell Line , Cell Proliferation , Cytoskeleton/metabolism , Flow Cytometry , Humans , Immunohistochemistry , Influenza A virus/growth & development , Poliovirus/growth & development , Receptors, Virus/analysis , Respiratory Syncytial Viruses/growth & development , Virus Cultivation/methods , Virus Replication
7.
Tissue Eng Part A ; 19(3-4): 393-402, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22924666

ABSTRACT

Creating a functional vascularized bone tissue remains one of the main goals of bone tissue engineering. Recently, a growing interest in the crosstalk between endothelial cells (EC) and osteoblasts (OB), the two main players in a new bone formation, has been observed. However, only a few reports have addressed a mutual influence of OB and EC on cell proliferation. Our study focuses on this issue by investigating cocultures of human bone-derived cells (HBDC) and human umbilical vein endothelial cells (HUVEC). Three various proportions of cells have been used that is, HBDC:HUVEC 1:1, 1:4, and 4:1 and the cocultures were investigated on day 1, 4, and 7, while HUVEC and HBDC monocultures served as reference. We have detected enhanced alkaline phosphatase (ALP) activity in a direct HBDC-HUVEC coculture. This effect was not observed when cells were separated by an insert, which is consistent with other reports on various OB-EC lineages. The appearance of gap-junctions in coculture was confirmed by a positive staining for connexin 43. The number of cells of both phenotypes has been determined by flow cytometry: CD-31-positive cells have been considered EC, while CD-31-negative have been counted as OB. We have observed an over 14-fold increase in OB number after a week in the 1:4 HBDC:HUVEC coculture as compared with less than fourfold in monoculture. The increase in HBDC number in 1:1 coculture has been less pronounced and has reached the value of about sevenfold. These results correspond well with the cell proliferation rate, which has been measured by 5-bromo-2'-deoxyuridine incorporation. Moreover, at day 7 EC have been still present in the coculture, which is inconsistent with some other reports. Real-time polymerase chain reaction analysis has revealed the upregulation of ALP and collagen type I genes, but not osteocalcin gene, in all the cocultures grown without pro-osteogenic additives. Our study indicates that HUVEC significantly promote HBDC expansion and upregulate collagen I gene expression in these cells. We believe that these findings have application potency in bone tissue engineering.


Subject(s)
Batch Cell Culture Techniques/methods , Cell Communication/physiology , Endothelial Cells/cytology , Endothelial Cells/physiology , Osteoblasts/cytology , Osteoblasts/physiology , Tissue Engineering/methods , Cell Proliferation , Cell Survival , Cells, Cultured , Coculture Techniques/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...