Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters










Publication year range
1.
Foods ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998493

ABSTRACT

Haskap berry (Lonicera caerulea L.) is a rich dietary source of anthocyanins with potent anti-inflammatory properties. In this study, isolated haskap berry anthocyanins were encapsulated in maltodextrin and inulin (3:1) by freeze-drying to improve stability and bioavailability. The structural properties of microcapsules, encapsulation yield, efficiency, recovery, and powder retention were evaluated. The microcapsules that exhibited the highest encapsulation efficiency (60%) and anthocyanin recovery (89%) were used in the dextran sulfate sodium (DSS)-induced acute colitis in mice. Thirty-five BALB/c male mice of seven weeks old were divided into seven dietary supplementation groups (n = 5) to receive either free anthocyanins, encapsulated anthocyanins (6.2 mg/day), or probiotics (1 × 109 CFU/day) alone or as combinations of anthocyanin and probiotics. As observed by clinical data, free anthocyanin and probiotic supplementation significantly reduced the severity of colitis. The supplementary diets suppressed the DSS-induced elevation of serum inflammatory (interleukin (IL)-6 and tumor necrosis factor) and apoptosis markers (B-cell lymphoma 2 and Bcl-2-associated X protein) in mice colon tissues. The free anthocyanins and probiotics significantly reduced the serum IL-6 levels. In conclusion, the dietary supplementation of haskap berry anthocyanins and probiotics protects against DSS-induced colitis possibly by attenuating mucosal inflammation, and this combination has the potential as a health-promoting dietary supplement and nutraceutical.

2.
Biomolecules ; 14(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39062483

ABSTRACT

Angiogenesis is a normal physiological process that also contributes to diabetic retinopathy-related complications and facilitates tumor metastasis by promoting the hematogenic dissemination of malignant cells from solid tumors. Here, we investigated the in vitro, ex vivo, and in vivo anti-angiogenic activity of phloridzin docosahexaenoate (PZ-DHA), a novel ω-3 fatty acid ester of a flavonoid precursor. Human umbilical vein endothelial cells (HUVEC) and human dermal microvascular endothelial cells (HMVEC) treated with a sub-cytotoxic concentration of PZ-DHA to assess in vitro anti-angiogenic activity showed impaired tubule formation on a Matrigel matrix. Ex vivo angiogenesis was measured using rat thoracic aortas, which exhibited reduced vessel sprouting and tubule formation in the presence of PZ-DHA. Female BALB/c mice bearing VEGF165- and basic fibroblast growth factor-containing Matrigel plugs showed a significant reduction in blood vessel development following PZ-DHA treatment. PZ-DHA inhibited HUVEC and HMVEC proliferation, as well as the migration of HUVECs in gap closure and trans-well cell migration assays. PZ-DHA inhibited upstream and downstream components of the Akt pathway and vascular endothelial growth factor (VEGF165)-induced overexpression of small molecular Rho GTPases in HUVECs, suggesting a decrease in actin cytoskeletal-mediated stress fiber formation and migration. Taken together, these findings reveal the potential of combined food biomolecules in PZ-DHA to inhibit angiogenesis.


Subject(s)
Cell Differentiation , Cell Movement , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Mice, Inbred BALB C , Humans , Animals , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Cell Proliferation/drug effects , Female , Mice , Cell Differentiation/drug effects , Rats , Docosahexaenoic Acids/pharmacology , Angiogenesis Inhibitors/pharmacology , Phlorhizin/pharmacology , Fatty Acids, Omega-3/pharmacology , Neovascularization, Physiologic/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Flavonoids/pharmacology , Angiogenesis
3.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791412

ABSTRACT

Eczema (atopic dermatitis, AD) is a skin disease characterized by skin barrier dysfunction due to various factors, including genetics, immune system abnormalities, and environmental triggers. Application of emollients and topical drugs such as corticosteroids and calcineurin inhibitors form the mainstay of treatments for this challenging condition. This review aims to summarize the recent advances made in phytochemical-based topical applications to treat AD and the different carriers that are being used. In this review, the clinical efficacy of several plant extracts and bioactive phytochemical compounds in treating AD are discussed. The anti-atopic effects of the herbs are evident through improvements in the Scoring Atopic Dermatitis (SCORAD) index, reduced epidermal thickness, decreased transepidermal water loss, and alleviated itching and dryness in individuals affected by AD as well as in AD mouse models. Histopathological studies and serum analyses conducted in AD mouse models demonstrated a reduction in key inflammatory factors, including thymic stromal lymphopoietin (TSLP), serum immunoglobulin E (IgE), and interleukins (IL). Additionally, there was an observed upregulation of the filaggrin (FLG) gene, which regulates the proteins constituting the stratum corneum, the outermost layer of the epidermis. Carriers play a crucial role in topical drug applications, influencing dose delivery, retention, and bioavailability. This discussion delves into the efficacy of various nanocarriers, including liposomes, ethosomes, nanoemulsions, micelles, nanocrystals, solid-lipid nanoparticles, and polymeric nanoparticles. Consequently, the potential long-term side effects such as atrophy, eruptions, lymphoma, pain, and allergic reactions that are associated with current topical treatments, including emollients, topical corticosteroids, topical calcineurin inhibitors, and crisaborole, can potentially be mitigated through the use of phytochemical-based natural topical treatments.


Subject(s)
Eczema , Filaggrin Proteins , Phytochemicals , Humans , Animals , Phytochemicals/administration & dosage , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Eczema/drug therapy , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Administration, Topical , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology
4.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611791

ABSTRACT

Acute lung injury (ALI) represents a life-threatening condition with high morbidity and mortality despite modern mechanical ventilators and multiple pharmacological strategies. Therefore, there is a need to develop efficacious interventions with minimal side effects. The anti-inflammatory activities of sea cucumber (Cucumaria frondosa) and wild blueberry (Vaccinium angustifolium) extracts have been reported recently. However, their anti-inflammatory activities and the mechanism of action against ALI are not fully elucidated. Thus, the present study aims to understand the mechanism of the anti-inflammatory activity of sea cucumber and wild blueberry extracts in the context of ALI. Experimental ALI was induced via intranasal lipopolysaccharide (LPS) instillation in C57BL/6 mice and the anti-inflammatory properties were determined by cytokine analysis, histological examination, western blot, and qRT-PCR. The results showed that oral supplementation of sea cucumber extracts repressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby downregulating the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF) in the lung tissue and in the plasma. Wild blueberry extracts also suppressed the expression of IL-4. Furthermore, the combination of sea cucumber and wild blueberry extracts restrained MAPK signaling pathways by prominent attenuation of phosphorylation of NF-κB, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) while the levels of pro-inflammatory cytokines were significantly suppressed. Moreover, there was a significant and synergistic reduction in varying degrees of ALI lesions such as distorted parenchyma, increased alveoli thickness, lymphocyte and neutrophil infiltrations, fibrin deposition, pulmonary emphysema, pneumonia, intra-alveolar hemorrhage, and edema. The anti-inflammatory effect of the combination of sea cucumber and wild blueberry extracts is associated with suppressing MAPK and NF-κB signaling pathways, thereby significantly reducing cytokine storm in LPS-induced experimental ALI.


Subject(s)
Acute Lung Injury , Blueberry Plants , Plant Extracts , Sea Cucumbers , Mice , Animals , Mice, Inbred C57BL , NF-kappa B , MAP Kinase Signaling System , Lipopolysaccharides/toxicity , Inflammation/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Cytokines , Extracellular Signal-Regulated MAP Kinases , Interleukin-1beta , Anti-Inflammatory Agents/pharmacology
5.
Molecules ; 29(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38338453

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid ß-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Proanthocyanidins , Probiotics , Synbiotics , Humans , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/etiology , Proanthocyanidins/pharmacology , Proanthocyanidins/therapeutic use , Liver , Probiotics/therapeutic use
6.
Oxid Med Cell Longev ; 2024: 7944378, 2024.
Article in English | MEDLINE | ID: mdl-38268969

ABSTRACT

Chaga mushroom (Inonotus obliquus) contains bioactive metabolites and has been used to treat various ailments, including cancer. Similarly, marine microalgae are considered a sustainable food supplement with anticancer and antioxidant properties. This study investigated the cytotoxicity of different extracts prepared from I. obliquus and microalgae using cultured human and canine cancer cell lines (MCF-7, HepG2, HOS, D-17, and DH-82). MTS cell viability assay was used to study the cytotoxicity of I. obliquus and microalgae extracts, and a synergy matrix effect was used to study the combined effect of the extracts. Isobologram analysis and the highest single agent synergy model were applied to study and validate the synergy between the extracts from I. obliquus and microalgae. Ethanol-based extraction and supercritical water extract significantly inhibited the growth of various mammalian cancer cells compared to aqueous extracts. Osteosarcoma cells were more susceptible to the supercritical extracts of I. obliquus and chlorophyll-free and sugar-free ethanol extracts of microalgae. A combination of ethanol-based I. obliquus extract and chlorophyll-free microalgae extract resulted in a synergistic interaction with various tested cancer cells. This study provides experimental evidence supporting the potential therapeutic application of I. obliquus and microalgae extracts with a synergistic effect to inhibit the growth of various mammalian cancer cells. Additional in vivo studies are required to fully explore possible therapeutic applications of these unique mixtures to be used in treating cancers.


Subject(s)
Bone Neoplasms , Microalgae , Humans , Animals , Dogs , Inonotus , Chlorophyll , Ethanol , Mammals , Sugar Alcohols , Water
7.
Curr Res Toxicol ; 5: 100137, 2023.
Article in English | MEDLINE | ID: mdl-38046279

ABSTRACT

Cancer has become the second leading cause of death in the world. Integrative cancer therapy management is continuously evolving to enhance treatment outcomes. Chaga mushroom (Inonotus obliquus) is a parasitic fungus acclaimed to contain pharmaceutical and nutraceutical value in the fight against cancer. In particular, triterpenoid constituents derived from Chaga mushrooms have been recognized for their anti-cancer activity after distinguished cytotoxicity was repeatedly observed in cancer cells treated in vitro with lipophilic fractions of extract compared to aqueous ones. Studies that investigate the anti-cancer activity of Chaga mushroom triterpenoids are reviewed in this article to determine which cancer cell lines demonstrate the greatest susceptibility to them while highlighting the structure-activity relationships that are involved. Triterpenoid supplementation as an adjunct to cancer treatment may be a viable option as inotodiol and 3-ß-22 α-dihydroxylanosta-8, 25-diene-24-one have been shown to exhibit anti-cancer activity similar to that of conventional drugs. Advances in addressing bioavailability challenges are also included in this review as studies include in vivo components.

8.
Crit Rev Anal Chem ; : 1-22, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37850880

ABSTRACT

Replacing conventional solvents with deep eutectic solvents (DES) has shown promising effects on the extraction yield of (poly)phenols. DES can be combined with ultrasound-assisted extraction (UAE) to further increase the extraction efficiency of (poly)phenols from natural resources compared to conventional methods. This review discusses the factors associated with DES (composition, solvent-to-sample ratio, extraction duration, and temperature) and UAE (ultrasound frequency, power, intensity, and duty cycle) methods that influence the extraction of (poly)phenols and informs future improvements required in the optimization of the extraction process. For the optimum (poly)phenol extraction from natural resources, the following parameters shall be considered: ultrasound frequency should be in the range of 20-50 kHz, ultrasound intensity in the range of 60-120 W/cm2, ultrasound duty cycle in the range of 40-80%, ultrasound duration for 10-30 minutes, and ultrasound temperature for 25-50 °C. Among the reported DES systems, choline chloride with glycerol or lactic acid, with a solvent-to-sample mass ratio of 10-30:1 shown to be effective. The solvent composition and solvent-to-sample mass ratio should be selected according to the target compound and the source material. However, the high viscosity of DES is among the major limitations. Optimizing these factors can help to increase the yield of extracted (poly)phenols and their applications.

9.
Sci Rep ; 13(1): 17206, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821510

ABSTRACT

Obesity is a state of metabolic dysfunction that can lead to dyslipidemia and impaired glucose homeostasis. Apple polyphenols have been shown to ameliorate dyslipidemia/metabolic dysfunction in humans. The influence of apple (poly)phenols on energy metabolism in high-fat (HF) diet-induced obese mice remains controversial. This study examined the effect of dietary supplementation of (poly)phenol-rich 'Daux Belan' apple (DB; 6.2 mg gallic acid equivalence (GAE)/mouse/day; 0.15% (poly)phenol) in the form of freeze-dried powder on glucose and lipid metabolism in male HF-fed C57BL/6NCrl mice, in comparison to low-(poly)phenol-containing 'Zestar' apple (Z; 0.4 mg GAE/mouse/day). Obesity, glucose intolerance, hypertriglyceridemia, and hepatic lipid vacuolation were induced by HF feeding while circulating cholesterol levels remained unchanged. DB apple supplementation did not protect against HF-induced body weight gain, hyperglycemia, hepatic triglyceride level elevation, and hepatic lipid vacuolation at the tested dosage. Future studies should be conducted with increased DB dosage and employ apple (poly)phenols supplemented in the form of extracts or sugar-free powder.


Subject(s)
Dyslipidemias , Glucose Intolerance , Humans , Male , Mice , Animals , Glucose Intolerance/etiology , Glucose Intolerance/prevention & control , Glucose Intolerance/metabolism , Phenol/metabolism , Mice, Inbred C57BL , Powders/pharmacology , Obesity/metabolism , Liver/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Dietary Supplements , Phenols/pharmacology , Phenols/metabolism , Dyslipidemias/etiology , Dyslipidemias/prevention & control , Dyslipidemias/metabolism , Lipids/pharmacology
10.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834020

ABSTRACT

The eradication of cancer stem cells (CSCs) is vital to successful cancer treatment and overall disease-free survival. CSCs are a sub-population of cells within a tumor that are defined by their capacity for continuous self-renewal and recapitulation of new tumors, demonstrated in vitro through spheroid formation. Flavonoids are a group of phytochemicals with potent anti-oxidant and anti-cancer properties. This paper explores the impact of the flavonoid precursor phloridzin (PZ) linked to the ω-3 fatty acid docosahexaenoate (DHA) on the growth of MCF-7 and paclitaxel-resistant MDA-MB-231-TXL breast cancer cell lines. Spheroid formation assays, acid phosphatase assays, and Western blotting were performed using MCF-7 cells, and the cell viability assays, Annexin-V-488/propidium iodide (PI) staining, and 7-aminoactinomycin D (7-AAD) assays were performed using MDA-MB-231-TXL cells. PZ-DHA significantly reduced spheroid formation, as well as the metabolic activity of MCF-7 breast cancer cells in vitro. Treatment with PZ-DHA also suppressed the metabolic activity of MDA-MB-231-TXL cells and led to apoptosis. PZ-DHA did not have an observable effect on the expression of the drug efflux transporters ATP-binding cassette super-family G member 2 (ABCG2) and multidrug resistance-associated protein 1 (MRP1). PZ-DHA is a potential treatment avenue for chemo-resistant breast cancer and a possible novel CSC therapy. Future pre-clinical studies should explore PZ-DHA as a chemo-preventative agent.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Paclitaxel/therapeutic use , Docosahexaenoic Acids/pharmacology , Phlorhizin/pharmacology , Cell Line, Tumor , Antineoplastic Agents/therapeutic use , ATP-Binding Cassette Transporters/metabolism , Neoplastic Stem Cells/metabolism , Cell Proliferation
11.
Mar Drugs ; 21(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37233456

ABSTRACT

Frondosides are the major saponins (triterpene glycosides) of the North Atlantic sea cucumber (Cucumaria frondosa). Frondosides possess amphiphilic characteristics due to the presence of various hydrophilic sugar moieties and hydrophobic genin (sapogenin). Saponins are abundant in holothurians, including in sea cucumbers that are widely distributed across the northern part of the Atlantic Ocean. Over 300 triterpene glycosides have been isolated, identified, and categorized from many species of sea cucumbers. Furthermore, specific saponins from sea cucumbers are broadly classified on the basis of the fron-dosides that have been widely studied. Recent studies have shown that frondoside-containing extracts from C. frondosa exhibit anticancer, anti-obesity, anti-hyperuricemic, anticoagulant, antioxidant, antimicrobial, antiangiogenic, antithrombotic, anti-inflammatory, antitumor, and immunomodulatory activities. However, the exact mechanism(s) of action of biological activities of frondosides is not clearly understood. The function of some frondosides as chemical defense molecules need to be understood. Therefore, this review discusses the different frondosides of C. frondosa and their potential therapeutic activities in relation to the postulated mechanism(s) of action. In addition, recent advances in emerging extraction techniques of frondosides and other saponins and future perspectives are discussed.


Subject(s)
Cucumis sativus , Saponins , Sea Cucumbers , Triterpenes , Animals , Sea Cucumbers/chemistry , Saponins/chemistry , Glycosides/chemistry , Triterpenes/chemistry
12.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047063

ABSTRACT

Cancer is an escalating global issue, with 19.3 million new cases and 9.9 million deaths in 2020. Therefore, effective approaches to prevent cancer are urgently required. Diet plays a significant role in determining cancer risk. Nutrients and food bioactives influence specific signaling pathways in the body. Recently, there have been significant advances in cancer prevention research through nutrigenomics or with the effects of dietary components on the genome. Google Scholar, PubMed, and Scopus databases were used to search for peer-reviewed articles between 2017 and 2023. Criteria used were vitamins, minerals, tumors, cancer, genes, inflammation, signaling pathways, and nutrigenomics. Among the total of 1857 articles available, the highest relevant 90 articles that specifically discussed signaling pathways and genes on cancer cell lines and human cancer patients were selected and reviewed. Food sources are rich in antioxidant micronutrients, which are effective in activating or regulating signaling pathways involved in pathogenesis and cancer therapy by activating enzymes such as mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K). The micronutrients are involved in the regulation of ß-catenin (WNT/ß-catenin) including mutations in Kras and epidermal growth factor receptor (EGFR) alongside inhibition of the NF-kB pathway. The most common mechanism of cancer prevention by these micronutrients is their antioxidative, anti-inflammation, and anti-apoptosis effects. This review discusses how nutrigenomics is essential and beneficial for developing cancer prevention and treatment approaches.


Subject(s)
Neoplasms , Vitamins , Humans , Vitamins/pharmacology , Vitamins/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Micronutrients/pharmacology , Micronutrients/therapeutic use , beta Catenin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Vitamin A , Vitamin K , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/prevention & control
13.
Toxicol Lett ; 379: 35-47, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36935082

ABSTRACT

Polymeric proanthocyanidins (P-PAC) induced hepatotoxicity in C57BL/6 mice. Mice were supplemented with P-PAC alone or with a mixture of probiotic bacteria (PB), Lactobacillus, Bifidobacterium, and Akkermansia muciniphila for 14 consecutive days. The liver tissues of sacrificed mice were analyzed by mass spectrometry to identify and quantify the P-PAC metabolites. Potential P-PAC metabolites, 2-hydroxyphenylacetic acid and pyrocatechol were detected in higher concentrations and 4-hydroxybenzoic acid was detected exclusively in the mice supplemented with P-PAC and PB. Supplementation with P-PAC alone or with PB caused no shift in the α-diversity of mice gut microbiota. P-PAC induced nonalcoholic steatohepatitis in mice through increasing liver exposure to intestinal bacterial lipopolysaccharides by reducing expression of gut epithelial tight junction proteins, claudin-3 and occludin. Lipopolysaccharide concentrations in the livers of mice supplemented with P-PAC were significantly high compared to the control mice. Furthermore, P-PAC downregulated the expressions of claudin-3 and claudin-4 tight junction proteins in cultured Caco-2 cell monolayers. PB biotransformed P-PAC into bioavailable metabolites and potentially reduced the toxicity of P-PAC. The toxicity of P-PAC and their synbiotics need to be critically evaluated for the safety of human consumption.


Subject(s)
Chemical and Drug Induced Liver Injury , Proanthocyanidins , Humans , Mice , Animals , Lipopolysaccharides/toxicity , Proanthocyanidins/pharmacology , Caco-2 Cells , Claudin-3 , Mice, Inbred C57BL , Bacteria , Tight Junction Proteins , Epithelium/metabolism
14.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835090

ABSTRACT

Cancer is one of the leading causes of death worldwide. Chemotherapy and radiation therapy are currently providing the basis for cancer therapies, although both are associated with significant side effects. Thus, cancer prevention through dietary modifications has been receiving growing interest. The potential of selected flavonoids in reducing carcinogen-induced reactive oxygen species (ROS) and DNA damage through the activation of nuclear factor erythroid 2 p45 (NF-E2)-related factor (Nrf2)/antioxidant response element (ARE) pathway was studied in vitro. Dose-dependent effects of pre-incubated flavonoids on pro-carcinogen 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone (NNKAc)-induced ROS and DNA damage in human bronchial epithelial cells were studied in comparison to non-flavonoids. The most effective flavonoids were assessed for the activation of Nrf2/ARE pathway. Genistein, procyanidin B2 (PCB2), and quercetin significantly suppressed the NNKAc-induced ROS and DNA damage. Quercetin significantly upregulated the phosphorylated protein kinase B/Akt. PCB2 significantly upregulated the activation of Nrf2 and Akt through phosphorylation. Genistein and PCB2 significantly upregulated the phospho-Nrf2 nuclear translocation and catalase activity. In summary, genistein and PCB2 reduced the NNKAc-induced ROS and DNA damage through the activation of Nrf2. Further studies are required to understand the role of dietary flavonoids on the regulation of the Nrf2/ARE pathway in relation to carcinogenesis.


Subject(s)
Carcinogens , Epithelial Cells , Genistein , Proanthocyanidins , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Humans , Antioxidant Response Elements/drug effects , Carcinogens/pharmacology , DNA Damage/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Flavonoids/pharmacology , Genistein/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction , Proanthocyanidins/pharmacology
15.
Pharmaceutics ; 14(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36297428

ABSTRACT

BACKGROUND: Carvacrol, a mono-terpenoid phenol found in herbs, such as oregano and thyme, has excellent antibacterial properties against Streptococcus pyogenes. However, its mechanism of bactericidal activity on S. pyogenes has not been elucidated. OBJECTIVES: This study investigated the bactericidal mechanism of carvacrol using three strains of S. pyogenes. METHODS: Flow cytometry (FCM) experiments were conducted to determine carvacrol's membrane permeabilization and cytoplasmic membrane depolarization activities. Protoplasts of S. pyogenes were used to investigate carvacrol's effects on the membrane, followed by gel electrophoresis. The carvacrol-treated protoplasts were examined by transmission electron microscopy (TEM) to observe ultrastructural morphological changes. The fluidity of the cell membrane was measured by steady-state fluorescence anisotropy. Thin-layer chromatographic (TLC) profiling was conducted to study the affinity of carvacrol for membrane phospholipids. RESULTS: Increased membrane permeability and decreased membrane potential from FCM and electron microscopy observations revealed that carvacrol killed the bacteria primarily by disrupting membrane integrity, leading to whole-cell lysis. Ultra-structural morphological changes in the membrane induced by carvacrol over a short period were confirmed using the S. pyogenes protoplast and membrane isolate models in vitro. In addition, changes in the other biophysical properties of the bacterial membrane, including concentration- and time-dependent increased fluidity, were observed. TLC experiments showed that carvacrol preferentially interacts with membrane phosphatidylglycerol (P.G.), phosphatidylethanolamine (P.E.), and cardiolipins (CL). CONCLUSIONS: Carvacrol exhibited rapid bactericidal action against S. pyogenes by disrupting the bacterial membrane and increasing permeability, possibly due to affinity with specific membrane phospholipids, such as P.E., P.G., and CL. Therefore, the bactericidal concentration of carvacrol (250 µg/mL) could be used to develop safe and efficacious natural health products for managing streptococcal pharyngitis or therapeutic applications.

16.
J Xenobiot ; 12(4): 289-306, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36278757

ABSTRACT

The highly contagious coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic and public health emergency as it has taken the lives of over 5.7 million in more than 180 different countries. This disease is characterized by respiratory tract symptoms, such as dry cough and shortness of breath, as well as other symptoms, including fever, chills, and fatigue. COVID-19 is also characterized by the excessive release of cytokines causing inflammatory injury to the lungs and other organs. It is advised to undergo precautionary measures, such as vaccination, social distancing, use of masks, hygiene, and a healthy diet. This review is aimed at summarizing the pathophysiology of COVID-19 and potential biologically active compounds (bioactive) found in plants and plant food. We conclude that many plant food bioactive compounds exhibit antiviral and anti-inflammatory properties and support in attenuating organ damage due to reduced cytokine release and improving the recovery process from COVID-19 infection.

17.
ScientificWorldJournal ; 2022: 9901018, 2022.
Article in English | MEDLINE | ID: mdl-36193042

ABSTRACT

Food-borne illnesses are a significant concern for consumers, the food industry, and food safety authorities. Natural preservatives are very crucial for enhancing food safety and shelf life. Therefore, this review aimed to assess the literature regarding the potential of natural preservatives to enhance food safety and extend the shelf life of food products. The review paper indicated that natural antimicrobial agents that inhibit bacterial and fungal growth for better quality and shelf life have been of considerable interest in recent years. Natural antimicrobials are mainly extracted and isolated as secondary metabolites of plants, animals, and microorganisms. Plants, especially herbs and spices, are given more attention as a source of natural antimicrobials. Microorganisms used in food fermentation also produce different antimicrobial metabolites, including organic acids, hydrogen peroxide, and diacetyl, in addition to bacteriocins. Products of animal origin, such as tissues and milk, contain different antimicrobial agents. Natural antimicrobials are primarily extracted and purified before utilization for food product development. The extraction condition and purification of natural preservatives may change their structure and affect their functionality. Selecting the best extraction method coupled with minimal processing such as direct mechanical extraction seems to preserve active ingredients. The activity of natural antimicrobials could also be influenced by the source, time of harvesting, and stage of development. The effectiveness of natural antimicrobial compounds in food applications is affected by different factors, including food composition, processing method, and storage conditions. Natural antimicrobials are safe because they can limit microbial resistance and meet consumers' demands for healthier foods.


Subject(s)
Anti-Infective Agents , Bacteriocins , Animals , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Diacetyl , Food Preservation , Food Preservatives/pharmacology , Food Safety , Hydrogen Peroxide
18.
Oxid Med Cell Longev ; 2022: 1422929, 2022.
Article in English | MEDLINE | ID: mdl-36124088

ABSTRACT

Anthocyanins are known for their therapeutic efficacy for many human diseases, including cancer. After ingestion, anthocyanins degrade due to oxidation and enzymatic breakdown, resulting in reduced therapeutic efficacy. Direct delivery to target tissues and entrapment of anthocyanins increases their stability, bioavailability, and therapeutic efficacy. The objective of the present study was to develop a direct delivery system of anthocyanins into pulmonary tissues via encapsulated nanocarriers. A cyanidin-3-O-glucoside (C3G)-rich anthocyanin extract was prepared from well-ripened haskap (Lonicera caerulea L.) berries (HB) and encapsulated in three different polymeric nanocarrier systems: polyethylene glycol-poly(lactide-co-glycolide), maltodextrin, and carboxymethyl chitosan (CMC). The anthocyanin encapsulation efficiency was significantly higher in CMC (10%) than in the other two polymers. The cytotoxicity and cytoprotective effect of HB anthocyanin-encapsulated CMC (HB-CMC, 4 µg of C3G equivalent anthocyanin in 2 mg/mL nanoparticle) and anthocyanin-free CMC (E-CMC, 2 mg/mL) were tested for cytotoxicity using human normal lung epithelial BEAS-2B cells. The CMC nanoparticles were not cytotoxic for BEAS-2B cells. The HB-CMC nanoparticles reduced carcinogen-induced oxidative stress in BEAS-2B cells and restored the expression of superoxide dismutase and glutathione peroxidase enzymes. The HB-CMC nanoparticles also reduced carcinogen-induced DNA single-strand breaks and alkaline-labile sites but not the double-strand breaks. The E-CMC, HB-CMC (28 µg C3G equivalent/mouse/day for six days), or the same dose of free HB anthocyanin was administered to A/JCr mice through a nose-only passive inhalation device. C3G and its metabolites, cyanidin, peonidin-3-O-glucoside, and cyanidin-3-O-glucuronide, were detected by UPLC/ESI/Q-TOF-MS in the lungs of mice after one hour of exposure. Therefore, the CMC could be a promising noncytotoxic candidate to encapsulate HB anthocyanin. Direct delivery of anthocyanin to lung tissues enhances tissue retention, slows phase 2 metabolism, and improves therapeutic efficacy.


Subject(s)
Chitosan , Nanoparticles , Animals , Anthocyanins/metabolism , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Carcinogens , DNA , Glucosides , Glucuronides , Glutathione Peroxidase , Humans , Lung/metabolism , Mice , Plant Extracts , Superoxide Dismutase
19.
Antioxidants (Basel) ; 11(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35883898

ABSTRACT

Antioxidants can be used as radioprotectants to reduce DNA damage due to exposure to radiation that could result in malignancies, including lung cancer. Mortality rates are consistently higher in lung cancer, which is usually diagnosed at later stages of cancer development and progression. In this preliminary study, we examined the potential of an antioxidant formulation (AOX2) to reduce DNA damage using a cell model of human normal bronchial epithelial cells (BEAS-2B). Cells were exposed to γ-irradiation or smoke-related hydrocarbon 4[(acetoxymethyl)nitrosamino]-1 (3-pyridyl) 1-butanone (NNKOAc) to induce DNA damage. We monitored intracellular reactive oxygen species (ROS) levels and evidence of genotoxic damage including DNA fragmentation ELISA, γ-H2AX immunofluorescence, and comet assays. Pre-incubation of the cells with AOX2 before exposure to γ-irradiation and NNKOAc significantly reduced DNA damage. The dietary antioxidant preparation AOX2 significantly reduced the induction of the tumor suppressor protein p53 and DNA damage-associated γ-H2AX phosphorylation by radiation and the NNKOAc treatment. Thus, AOX2 has the potential to act as a chemoprotectant by lowering ROS levels and DNA damage caused by exposure to radiation or chemical carcinogens.

20.
Microb Pathog ; 169: 105684, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35863588

ABSTRACT

Streptococcus pyogenes is a leading cause of chronic and acute infections, including streptococcus pharyngitis. Biofilm formation by S. pyogenes can cause tolerance against antibiotics. Although penicillin remains the first choice of antibiotic for S. pyogenes, alternative approaches have gained interest due to treatment failures and hypersensitive individuals. Carvacrol is a monoterpenoid from herbal plants with selective biocidal activity on S. pyogenes. Therefore, the present study reveals the efficacy of carvacrol in inhibiting and eradicating S. pyogenes biofilm. The antibiofilm activities were investigated using colorimetric assays, microscopy, cell surface hydrophobicity, gene expression analysis, and in-silico analysis. Carvacrol also showed a minimum biofilm inhibitory concentration (MBIC) against S. pyogenes of 125 µg/mL. The electron microscopic and confocal microscopic analyses revealed a dose-dependent suppression of biofilm formation and a reduction in the biofilm thickness by carvacrol. Carvacrol also inhibited the biofilm-associated virulence factors such as cell surface hydrophobicity. Quantitative real-time polymerase chain reaction analysis showed the downregulation of speB, srtB, luxS, covS, dltA, ciaH, and hasA genes involved in biofilm formation. The results suggested the therapeutic potential of carvacrol against biofilm-associated streptococcal infections.


Subject(s)
Biofilms , Streptococcus pyogenes , Anti-Bacterial Agents/pharmacology , Cymenes , Humans , Hydrophobic and Hydrophilic Interactions , Quorum Sensing/genetics , Streptococcus pyogenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL