Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 60(13): 6858-6863, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33559957

ABSTRACT

The structure of multiply twinned particles (MTPs) provides an example of how specific crystallographic features dictate the geometric shape of finite-sized crystals. The formation of MTPs during colloidal synthesis can occur through at least two different pathways: 1) growth from multiply twinned seeds or 2) the stepwise formation of new twin boundaries on single-crystalline seeds (either by particle overgrowth or multiparticle attachment). By utilizing in situ transmission electron microscopy, recent studies have provided real-time evidence for both pathways. Looking forward, the knowledge of specific evolution pathways that occur under a given synthetic condition will aid in the design of robust MTP syntheses. More importantly, further studies pertaining to the structural evolution and energetics of nanoparticles are needed to provide a complete understanding of MTP formation pathways.

2.
Nanoscale ; 9(48): 19398-19407, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29210416

ABSTRACT

Observation of energy transfer (ET) from multiexcitonic (MX) complexes in nanocrystal quantum dots (NQDs) has been severely restricted due to efficient nonradiative Auger recombination leading to very low MX emission quantum yields. Here we employed "giant" CdSe/CdS NQDs with suppressed Auger recombination to study ET of biexcitons (BX) and charged excitons (trions) into Si substrate. Photoluminescence (PL) measurements of (sub)monolayers of gNQDs controllably assembled on various interacting surfaces and augmented by single gNQD's imaging reveal appearance of BX spectral signatures and progressive acceleration of PL lifetimes of all excitonic species on Si substrates. From statistical analysis of a large number of PL lifetime traces, representative exciton, trion and BX ET efficiencies are measured as ∼75%, 55% and 45% respectively. Detailed analysis of the MX's radiative rates demonstrate the crucial role of the radiative (waveguide) ET in maintaining high overall transfer efficiency despite the prevalent Auger recombination. Our observations point towards practical utilization of MX-bearing nanocrystals in future optoelectronics architectures.

3.
Nanoscale ; 9(25): 8695-8702, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28613340

ABSTRACT

Integration of colloidal nanocrystal quantum dots (NQDs) with strongly absorbing semiconductors offers the possibility of developing optoelectronic and photonic devices with new functionalities. We examine the process of energy transfer (ET) from photoactive CdSe/ZnS core/shell NQDs into lead-halide perovskite polycrystalline films as a function of distance from the perovskite surface using time-resolved photoluminescence (TRPL) spectroscopy. We demonstrate near-field electromagnetic coupling between vastly dissimilar excitation in two materials that can reach an efficiency of 99% at room temperature. Our experimental results, combined with electrodynamics modeling, reveal the leading role of non-radiative ET at close distances, augmented by the waveguide emission coupling and light reabsorption at separations >10 nm. These results open the way to combining materials with different dimensionalities to achieve novel nanoscale architectures with improved photovoltaic and light emitting functionalities.

4.
J Chem Phys ; 146(5): 052813, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28178839

ABSTRACT

The initial stages of cobalt metal growth by atomic layer deposition are described using the precursors bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid. Ruthenium, platinum, copper, Si(100), Si-H, SiO2, and carbon-doped oxide substrates were used with a growth temperature of 180 °C. On platinum and copper, plots of thickness versus number of growth cycles were linear between 25 and 250 cycles, with growth rates of 0.98 Å/cycle. By contrast, growth on ruthenium showed a delay of up to 250 cycles before a normal growth rate was obtained. No films were observed after 25 and 50 cycles. Between 100 and 150 cycles, a rapid growth rate of ∼1.6 Å/cycle was observed, which suggests that a chemical vapor deposition-like growth occurs until the ruthenium surface is covered with ∼10 nm of cobalt metal. Atomic force microscopy showed smooth, continuous cobalt metal films on platinum after 150 cycles, with an rms surface roughness of 0.6 nm. Films grown on copper gave rms surface roughnesses of 1.1-2.4 nm after 150 cycles. Films grown on ruthenium, platinum, and copper showed resistivities of <20 µΩ cm after 250 cycles and had values close to those of the uncoated substrates at ≤150 cycles. X-ray photoelectron spectroscopy of films grown with 150 cycles on a platinum substrate showed surface oxidation of the cobalt, with cobalt metal underneath. Analogous analysis of a film grown with 150 cycles on a copper substrate showed cobalt oxide throughout the film. No film growth was observed after 1000 cycles on Si(100), Si-H, and carbon-doped oxide substrates. Growth on thermal SiO2 substrates gave ∼35 nm thick layers of cobalt(ii) formate after ≥500 cycles. Inherently selective deposition of cobalt on metallic substrates over Si(100), Si-H, and carbon-doped oxide was observed from 160 °C to 200 °C. Particle deposition occurred on carbon-doped oxide substrates at 220 °C.

5.
Sci Rep ; 7: 41967, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28155920

ABSTRACT

Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.

6.
J Am Chem Soc ; 137(47): 14842-5, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26579554

ABSTRACT

The classical SiO2/Si interface, which is the basis of integrated circuit technology, is prepared by thermal oxidation followed by high temperature (>800 °C) annealing. Here we show that an interface synthesized between titanium dioxide (TiO2) and hydrogen-terminated silicon (H:Si) is a highly efficient solar cell heterojunction that can be prepared under typical laboratory conditions from a simple organometallic precursor. A thin film of TiO2 is grown on the surface of H:Si through a sequence of vapor deposition of titanium tetra(tert-butoxide) (1) and heating to 100 °C. The TiO2 film serves as a hole-blocking layer in a TiO2/Si heterojunction solar cell. Further heating to 250 °C and then treating with a dilute solution of 1 yields a hole surface recombination velocity of 16 cm/s, which is comparable to the best values reported for the classical SiO2/Si interface. The outstanding performance of this heterojunction is attributed to Si-O-Ti bonding at the TiO2/Si interface, which was probed by angle-resolved X-ray photoelectron spectroscopy. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) showed that Si-H bonds remain even after annealing at 250 °C. The ease and scalability of the synthetic route employed and the quality of the interface it provides suggest that this surface chemistry has the potential to enable fundamentally new, efficient silicon solar cell devices.

8.
Nanoscale ; 7(18): 8524-30, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25896572

ABSTRACT

We report the observation of a large enhancement of the wavelength-dependent photocurrent in ultrathin silicon nanomembranes (SiNM) decorated with colloidal CdSe/ZnS nanocrystal quantum dots (NQDs). Back-gated, field-effect transistor structures based on 75 nm-thick SiNMs are functionalized with self-assembled monolayers (SAMs) preventing surface oxidation and minimizing the surface defect densities. NQDs are drop cast on the active region of the device and the photocurrent is measured as a function of the excitation wavelength across the NQD absorption region. Photocurrent enhancement on the order of several hundred nA's is observed for NQD/SAM/SiNM devices compared to reference SAM/SiNM structures, with the device peak response closely correlated to the NQD absorption peak. We propose light-induced gating of the surface electrostatic potential and forward self-biasing of the FET channel as the two key mechanisms leading to the large photocurrent increase. Our findings open the possibility of employing silicon-nanocrystal hybrid structures for light sensing applications.

9.
Phys Chem Chem Phys ; 17(2): 957-62, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25408139

ABSTRACT

g-C3N4 is a promising material for hydrogen production from water via photo-catalysis, if we can tune its band gap to desirable levels. Using a combined experimental and ab initio approach, we uncover an almost perfectly linear relationship between the band gap and structural aspects of g-C3N4, which we show to originate in a changing overlap of wave functions associated with the lattice constants. This changing overlap, in turn, causes the unoccupied pz states to experience a significantly larger energy shift than any other occupied state (s, px, or py), resulting in this peculiar relationship. Our results explain and demonstrate the possibility to tune the band gap by structural means, and thus the frequency at which g-C3N4 absorbs light.

10.
ACS Nano ; 9(1): 725-32, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25531244

ABSTRACT

The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.

11.
Nat Commun ; 5: 5045, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25434582

ABSTRACT

Epitaxial heterostructures with precise registry between crystal layers play a key role in electronics and optoelectronics. In a close analogy, performance of nanocrystal (NC) based devices depends on the perfection of interfaces formed between NC layers. Here we systematically study the epitaxial growth of NC layers for the first time to enable the fabrication of coherent NC layers. NC epitaxy reveals an exceptional strain tolerance. It follows a universal island size scaling behaviour and shows a strain-driven transition from layer-by-layer to Stranski-Krastanov growth with non-trivial island height statistics. Kinetic bottlenecks play an important role in NC epitaxy, especially in the transition from sub-monolayer to multilayer coverage and the epitaxy of NCs with anisotropic shape. These findings provide a foundation for the rational design of epitaxial structures in a fundamentally and practically important size regime between atomic and microscopic systems.

12.
Nano Lett ; 13(5): 2158-62, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23614346

ABSTRACT

The self-assembly of nanoscale structures from functional nanoparticles has provided a powerful path to developing devices with emergent properties from the bottom-up. Here we demonstrate that freestanding sheets self-assembled from various nanoparticles form versatile nanomechanical resonators in the megahertz frequency range. Using spatially resolved laser-interferometry to measure thermal vibrational spectra and image vibration modes, we show that their dynamic behavior is in excellent agreement with linear elastic response for prestressed drumheads of negligible bending stiffness. Fabricated in a simple one-step drying-mediated process, these resonators are highly robust and their inorganic-organic hybrid nature offers an extremely low mass, low stiffness, and the potential to couple the intrinsic functionality of the nanoparticle building blocks to nanomechanical motion.

13.
Nat Mater ; 12(5): 410-5, 2013 May.
Article in English | MEDLINE | ID: mdl-23503009

ABSTRACT

Arrays of ligand-stabilized colloidal nanocrystals with size-tunable electronic structure are promising alternatives to single-crystal semiconductors in electronic, optoelectronic and energy-related applications. Hard/soft interfaces in these nanocrystal arrays (NCAs) create a complex and uncharted vibrational landscape for thermal energy transport that will influence their technological feasibility. Here, we present thermal conductivity measurements of NCAs (CdSe, PbS, PbSe, PbTe, Fe3O4 and Au) and reveal that energy transport is mediated by the density and chemistry of the organic/inorganic interfaces, and the volume fractions of nanocrystal cores and surface ligands. NCA thermal conductivities are controllable within the range 0.1-0.3 W m(-1) K(-1), and only weakly depend on the thermal conductivity of the inorganic core material. This range is 1,000 times lower than the thermal conductivity of silicon, presenting challenges for heat dissipation in NCA-based electronics and photonics. It is, however, 10 times smaller than that of Bi2Te3, which is advantageous for NCA-based thermoelectric materials.

14.
Nat Mater ; 10(11): 815-6, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22020004
15.
J Am Chem Soc ; 132(1): 289-96, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-19968283

ABSTRACT

We report a size-dependent change in the morphology of superlattices self-assembled from monodisperse colloidal PbS nanocrystals. Superlattices of large (>7 nm) PbS nanocrystals showed a strong tendency to form multiply twinned face-centered cubic superlattices with decahedral and icosahedral symmetry, exhibiting crystallographically forbidden five-fold symmetry elements. On the other hand, superlattices of small (<4 nm) PbS nanocrystals exhibited no twinning. To explain such a dramatic difference in the twinning probability, we showed that twinning energy in a nanocrystal superlattice is strongly size-dependent. In addition, the interparticle potentials acting during the self-assembly process are "softer" in the case of larger PbS nanocrystals, thus favoring the formation of multiply twinned superlattices. Our work introduces a new class of materials exhibiting multiple twinning, while offering flexibility in designing interparticle potentials.

SELECTION OF CITATIONS
SEARCH DETAIL
...