Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am J Respir Cell Mol Biol ; 40(5): 601-9, 2009 May.
Article in English | MEDLINE | ID: mdl-18952568

ABSTRACT

Obstructive sleep apnea, characterized by intermittent periods of hypoxemia, is an independent risk factor for the development of pulmonary hypertension. However, the exact mechanisms of this disorder remain to be defined. Enhanced NADPH oxidase expression and superoxide (O2(-).) generation in the pulmonary vasculature play a critical role in hypoxia-induced pulmonary hypertension. Therefore, the current study explores the hypothesis that chronic intermittent hypoxia (CIH) causes pulmonary hypertension, in part, by increasing NADPH oxidase-derived reactive oxygen species (ROS) that contribute to pulmonary vascular remodeling and hypertension. To test this hypothesis, male C57Bl/6 mice and gp91phox knockout mice were exposed to CIH for 8 hours per day, 5 days per week for 8 weeks. CIH mice were placed in a chamber where the oxygen concentration was cycled between 21% and 10% O2 45 times per hour. Exposure to CIH for 8 weeks increased right ventricular systolic pressure (RVSP), right ventricle (RV):left ventricle (LV) + septum (S) weight ratio, an index of RV hypertrophy, and thickness of the right ventricular anterior wall as measured by echocardiography. CIH exposure also caused pulmonary vascular remodeling as demonstrated by increased muscularization of the distal pulmonary vasculature. CIH-induced pulmonary hypertension was associated with increased lung levels of the NADPH oxidase subunits, Nox4 and p22phox, as well as increased activity of platelet-derived growth factor receptor beta and its associated downstream effector, Akt kinase. These CIH-induced derangements were attenuated in similarly treated gp91phox knockout mice. These findings demonstrate that NADPH oxidase-derived ROS contribute to the development of pulmonary vascular remodeling and hypertension caused by CIH.


Subject(s)
Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/etiology , Hypoxia/complications , Hypoxia/enzymology , NADPH Oxidases/metabolism , Animals , Biological Availability , Chronic Disease , Hemoglobins/metabolism , Lung/blood supply , Lung/enzymology , Lung/pathology , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2 , NADPH Oxidase 4 , Nitric Oxide/metabolism , Protein Subunits/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction , Superoxides/metabolism
2.
Alcohol ; 41(5): 309-16, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17889307

ABSTRACT

Chronic ethanol (EtOH) ingestion increases the incidence of acute respiratory distress syndrome. The mechanisms underlying EtOH-induced susceptibility to lung injury continue to be defined. This study examines the hypothesis that EtOH increases endothelial nitric oxide synthase (eNOS) expression and activity in the lungs of a rat model of chronic EtOH ingestion. Male Sprague-Dawley rats were fed liquid diets containing EtOH (36% of calories) or maltose-dextrin as an isocaloric substitution for EtOH (control) for 6 weeks. Selected animals were also treated with the angiotensin-converting enzyme (ACE) inhibitor lisinopril (3 mg/l in diet) for 6 weeks. At study completion, animals were sacrificed, and lung tissue was collected for assays of nitric oxide (NO) metabolism or pulmonary microvascular endothelial cells (MVEC) were isolated for analysis of NO release. Compared to the control diet, chronic EtOH ingestion increased lung H2O2 production, eNOS expression and activity, lung cyclic guanosine monophosphate (cGMP) content, and levels of protein nitration and oxidation. MVEC from animals with chronic EtOH ingestion released greater amounts of NO. EtOH-induced increases in lung H2O2 production, eNOS expression and activity, cGMP content, protein nitration and oxidation, and MVEC NO production were all attenuated by treatment with lisinopril. Chronic EtOH ingestion stimulates ACE-dependent increases in NO production in the lung. These novel findings indicate that chronic EtOH ingestion increases reactive species production in the lung parenchyma and provide new insights into mechanisms by which EtOH causes phenotypic alterations in the lung and alters the lung's response to inflammatory stimuli.


Subject(s)
Alcohol Drinking/metabolism , Central Nervous System Depressants/toxicity , Endothelium, Vascular/drug effects , Ethanol/toxicity , Lung/drug effects , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Cells, Cultured , Central Nervous System Depressants/administration & dosage , Cyclic GMP/metabolism , Endothelium, Vascular/enzymology , Endothelium, Vascular/metabolism , Ethanol/administration & dosage , Hydrogen Peroxide/metabolism , Lisinopril/pharmacology , Lung/blood supply , Lung/metabolism , Male , Models, Animal , Oxidative Stress/drug effects , Peroxynitrous Acid/metabolism , Proteins/metabolism , Rats , Rats, Sprague-Dawley , Renin-Angiotensin System/drug effects
3.
Vascul Pharmacol ; 46(6): 456-62, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17337254

ABSTRACT

Oxidative stress plays an important role in diabetic vascular dysfunction. The sources and regulation of reactive oxygen species production in diabetic vasculature continue to be defined. Because peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reduced superoxide anion (O(2)(-.)) generation in vascular endothelial cells in vitro by reducing NADPH oxidase and increasing Cu/Zn superoxide dismutase (SOD) expression, the current study examined the effect of PPARgamma ligands on vascular NADPH oxidase and O(2)(-.) generation in vivo. Lean control (db(+)/db(-)) and obese, diabetic, leptin receptor-deficient (db(-)/db(-)) mice were treated with either vehicle or rosiglitazone (3 mg/kg/day) by gavage for 7-days. Compared to controls, db(-)/db(-) mice weighed more and had metabolic derangements that were not corrected by treatment with rosiglitazone for 1-week. Aortic O(2)(-.) generation and mRNA levels of the NADPH oxidase subunits, Nox-1, Nox-2, and Nox-4 as well as Nox-4 protein expression were elevated in db(-)/db(-) compared to db(+)/db(-) mice, whereas aortic Cu/Zn SOD protein and PPARgamma mRNA levels were reduced in db(-)/db(-) mice. Treatment with rosiglitazone for 1-week significantly reduced aortic O(2)(-.) production and the expression of Nox-1, 2, and 4 but failed to increase Cu/Zn SOD or PPARgamma in aortic tissue from db(-)/db(-) mice. These data demonstrate that the vascular expression of Nox-1, 2, and 4 subunits of NADPH oxidase is increased in db(-)/db(-) mice and that short-term treatment with the PPARgamma agonist, rosiglitazone, has the potential to rapidly suppress vascular NADPH oxidase expression and O(2)(-.) production through mechanisms that do not appear to depend on correction of diabetic metabolic derangements.


Subject(s)
Aorta/drug effects , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , PPAR gamma/agonists , Thiazolidinediones/pharmacology , Animals , Aorta/enzymology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Down-Regulation , Hypoglycemic Agents/therapeutic use , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , NADH, NADPH Oxidoreductases/metabolism , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , RNA, Messenger/biosynthesis , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Leptin , Rosiglitazone , Superoxides/metabolism , Thiazolidinediones/therapeutic use
4.
Am J Respir Cell Mol Biol ; 34(3): 314-9, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16284359

ABSTRACT

Alcohol abuse increases the incidence of acute respiratory distress syndrome and causes oxidative stress and cellular dysfunction in the lung. The mechanisms of ethanol (EtOH)-induced oxidative stress in the lung remain to be defined. Chronic alcohol ingestion has been associated with increased renin-angiotensin system (RAS) activity. Therefore, the current study investigated the ability of lisinopril, an angiotensin-converting enzyme (ACE) inhibitor, to modulate oxidative stress in the lung after chronic EtOH ingestion in a well-established rat model. Male Sprague-Dawley rats were fed liquid diets containing EtOH (36% of calories) or maltose-dextrin as an isocaloric substitution for EtOH (Control) for 6 wk. Selected animals were also treated with lisinopril (3 mg/liter) for 6 wk. Chronic EtOH ingestion increased bronchoalveolar lavage fluid glutathione disulfide levels and superoxide formation in lung parenchyma. These effects of EtOH were attenuated by lisinopril treatment. Chronic EtOH ingestion failed to increase ACE expression or angiotensin II levels in lung homogenates, but increased angiotensinogen, angiotensin II type 1 and type 2 receptor levels, and ACE activity. Chronic EtOH ingestion also increased the levels of the NADPH oxidase subunit, gp91phox, an effect that was attenuated by lisinopril, but had no effect on lung p22phox or p47phox levels. These findings suggest that EtOH-mediated RAS activation plays an important role in pulmonary oxidative stress and provide new insights into mechanisms by which EtOH causes oxidative stress in the lung and potential strategies of lung protection through ACE inhibition.


Subject(s)
Ethanol/pharmacology , Lung/drug effects , Membrane Glycoproteins/metabolism , NADPH Oxidases/metabolism , Superoxides/metabolism , Angiotensin II/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensinogen/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Ethanol/administration & dosage , Glutathione Disulfide/metabolism , Lisinopril/pharmacology , Lung/metabolism , Lung/pathology , Male , Membrane Transport Proteins/metabolism , NADPH Oxidase 2 , Oxidative Stress , Peptidyl-Dipeptidase A/biosynthesis , Phosphoproteins/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Renin-Angiotensin System/physiology
5.
Alcohol Clin Exp Res ; 29(11): 1932-8, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16340449

ABSTRACT

BACKGROUND: Chronic ethanol (EtOH) ingestion increases the incidence of the Acute Respiratory Distress Syndrome (ARDS), a severe form of acute lung injury characterized by endothelial and epithelial barrier dysfunction. The regulated production of nitric oxide (NO) by the endothelium plays a central role in normal vascular function, and alterations in NO production have been implicated in barrier dysfunction. Although previous reports examined the impact of acute EtOH stimulation on endothelial NO production, this study extends those observations to clarify mechanisms of chronic EtOH-mediated alterations in endothelial nitric oxide synthase (eNOS) expression and NO production. METHODS: Porcine pulmonary artery endothelial cells (PAEC) were treated with EtOH (0.04-0.16%, w/v) for 72 hr in sealed chambers to prevent evaporation. NO release and eNOS expression were determined to examine the effect of chronic EtOH stimulation on endothelial NO metabolism. RESULTS: While there was no change in the extent of phosphorylated eNOS at ser, chronic EtOH stimulation caused dose-dependent increases in NO production and increased eNOS expression, effects that were attenuated by the transcriptional inhibitor, alpha-amanitin (AA), and wortmannin, a specific phosphatidylinositol 3 kinase (PI3 K) inhibitor. EtOH stimulation also increased eNOS interaction with heat shock protein (hsp90), a molecular chaperone known to enhance eNOS activity. Geldanamycin, an hsp90 inhibitor, attenuated chronic EtOH-mediated increases in NO production. CONCLUSIONS: These results indicate that chronic EtOH exposure increases endothelial NO production by increasing eNOS protein levels through PI3 K-dependent up regulation of eNOS gene transcription and by increasing interactions between eNOS and hsp90. These findings clarify mechanisms by which chronic EtOH stimulation modulates vascular endothelial function and suggest new targets for investigation and intervention in EtOH-induced alterations in susceptibility to lung injury.


Subject(s)
Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Ethanol/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Endothelium, Vascular/enzymology , Humans , In Vitro Techniques , Nitric Oxide Synthase/metabolism , Phosphorylation , Pulmonary Artery/drug effects , Pulmonary Artery/enzymology , Pulmonary Artery/metabolism , Respiratory Distress Syndrome/metabolism , Swine
6.
Endothelium ; 12(1-2): 41-56, 2005.
Article in English | MEDLINE | ID: mdl-16036315

ABSTRACT

Although pregnancy is clearly associated with refractoriness to infused angiotensin II (AII) in the uteroplacental unit, there is still dispute over the mechanism by which angiotensin type 1 and type 2 receptors (AT1R and AT2R) may mediate this response in the uterine artery. This is in large part due to incomplete knowledge of levels of AT1R and AT2R expression and function in uterine artery endothelium (UA Endo) in the nonpregnant (NP) and pregnant (P) states, combined with the disagreement on whether AII may act through release of adrenomedullary catecholamines. The authors have previously described an increase in AT1R in UA Endo but not UA vascular smooth muscle (VSM) during pregnancy as compared to the nonpregnant intact ewe. Herein they report that the pregnancy-associated increase in AT(1)R expression in UA Endo is regulated by ovarian steroids. Using a recently developed antibody to AT2R, the authors now show there is no change in AT2R in UA Endo or VSM associated with ovarian function, and although AT2R is not changed in UA Endo by pregnancy, there is a significant decrease observed in UA VSM at that time. The authors also examined changes in receptors in UA Endo and VSM in estrogen (E2beta)-primed ewes in view of the common use of this model as a control for physiologic studies. In contrast to their findings in nonprimed nonpregnant or pregnant animals, the authors observed a significant increase in both AT1R and AT2R in UA Endo in response to the supraphysiologic priming with E2beta. In order to address the possible functionality of AT1R or AT2R in UA Endo, the authors used the uterine artery endothelial cell (UAEC) model of UA endothelial cells maintained in culture to passage 4. Differences in expression of AT1R or AT2R were normalized at passage 4 in P-UAECs and NP-UAECs. Treatment with AII activated phospholipase C (PLC) in both NP- and P-UAECs but signaling through the extracellular signal-regulated kinase (ERK) pathway was dramatically enhanced in P-UAECs compared to NP-UAECs. Surprisingly, both phosphoinositol turnover and ERK2 phosphorylation responses failed to display the expected dose-responses. Inhibition of AII-stimulated ERK2 phosphorylation with antagonists DUP 753 (AT1R, 10 microM) and PD 123319 (AT2R, 10 microM) failed to selectively inhibit ERK2 phosphorylation. The authors conclude that (a) the net effect of pregnancy may be an increase in the AT1R/AT2R ratio in both UA Endo and VSM but through apparently distinct mechanisms, (b) the ovariectomized animal model is similar to the luteal state for AT1R and AT2R expression, while the E2beta-primed model does not resemble the nonpregnant or pregnant state, and (c) there is a real possibility that AII may mediate its effects either through a complex AT1R-AT2R interaction or via an as-yet unidentified non-AT1, non-AT2 receptor.


Subject(s)
Endometrium/metabolism , Endothelium, Vascular/pathology , Muscle, Smooth/metabolism , Ovary/metabolism , Pregnancy, Animal/metabolism , Receptor, Angiotensin, Type 1/biosynthesis , Receptor, Angiotensin, Type 2/biosynthesis , Steroids/biosynthesis , Animals , Endometrium/blood supply , Female , Gene Expression Regulation/physiology , Pregnancy , Sheep
7.
Arterioscler Thromb Vasc Biol ; 25(9): 1810-6, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16020752

ABSTRACT

OBJECTIVE: We recently reported that the peroxisome proliferator-activated receptor gamma (PPARgamma) ligands 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) and ciglitazone increased cultured endothelial cell nitric oxide (NO) release without increasing the expression of endothelial nitric oxide synthase (eNOS). The current study was designed to characterize further the molecular mechanisms underlying PPARgamma-ligand-stimulated increases in endothelial cell NO production. METHODS AND RESULTS: Treating human umbilical vein endothelial cells (HUVEC) with PPARgamma ligands (10 micromol/L 15d-PGJ2, ciglitazone, or rosiglitazone) for 24 hours increased NOS activity and NO release. In selected studies, HUVEC were treated with PPARgamma ligands and with the PPARgamma antagonist GW9662 (2 micromol/L), which fully inhibited stimulation of a luciferase reporter gene, or with small interfering RNA to PPARgamma, which reduced HUVEC PPARgamma expression. Treatment with either small interfering RNA to PPARgamma or GW9662 inhibited 15d-PGJ2-, ciglitazone-, and rosiglitazone-induced increases in endothelial cell NO release. Rosiglitazone and 15d-PGJ2, but not ciglitazone, increased heat shock protein 90-eNOS interaction and eNOS ser1177 phosphorylation. The heat shock protein 90 inhibitor geldanamycin attenuated 15d-PGJ2- and rosiglitazone-stimulated NOS activity and NO production. CONCLUSIONS: These findings further clarify mechanisms involved in PPARgamma-stimulated endothelial cell NO release and emphasize that individual ligands exert their effects through distinct PPARgamma-dependent mechanisms.


Subject(s)
Endothelium, Vascular/drug effects , Hypoglycemic Agents/pharmacology , Nitric Oxide/metabolism , PPAR gamma/agonists , Thiazolidinediones/pharmacology , Anilides/pharmacology , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Genes, Reporter , Humans , Ligands , PPAR gamma/genetics , PPAR gamma/metabolism , Prostaglandin D2/analogs & derivatives , Prostaglandin D2/pharmacology , RNA, Small Interfering , Rosiglitazone , Signal Transduction/drug effects , Umbilical Veins/cytology
8.
J Physiol ; 565(Pt 1): 101-9, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15774525

ABSTRACT

Nitric oxide (NO) production has been shown to increase uterine blood flow and be elevated in ewes carrying multiple fetuses during late gestation. Vascular endothelial growth factor (VEGF) has been reported to increase eNOS expression and NO production in endothelial cell cultures. As angiogenesis and vasodilatation of the uterine and placental vascular beds are important at all stages of pregnancy, it is important to understand how VEGF and NO change throughout gestation in circulation. Therefore the objectives of the current study were to evaluate the systemic levels of VEGF and NO metabolite (NOx) throughout ovine gestation and to determine if there was an effect of sheep carrying singletons versus multiple fetuses. NOx and VEGF concentrations were analysed in systemic blood from pregnant ewes starting on day 27 of pregnancy and at multiple intermittent intervals throughout pregnancy until term. Blood samples from non-pregnant and postpartum ewes were also analysed. NOx concentrations in maternal blood expressed a biphasic pattern with NOx concentrations increasing (P < 0.05) over non-pregnant values on days 40-69 of gestation, returning to non-pregnant concentrations from days 70-100, and again increasing (P < 0.05) until term. Postpartum NOx concentrations were similar to non-pregnant values. While ewes carrying multiple fetuses had increased (P < 0.05) concentrations of NOx on days 60-69, there were no differences in NOx concentrations in ewes carrying singletons or multiples from day 70-99 of gestation. Starting on day 100 and continuing throughout the duration of pregnancy, ewes carrying multiple fetuses had increased (P < 0.05) concentrations of NOx compared to ewes carrying singletons. Concentrations of VEGF showed a different pattern from NOx with VEGF decreasing (P < 0.05) from day 20-69 of pregnancy compared to non-pregnant ewes. Concentrations of VEGF returned to non-pregnant levels by day 70 and remained constant throughout the duration of pregnancy. On days 20-39, ewes carrying singleton fetuses had an increased VEGF concentration (P < 0.05), whereas ewes carrying multiple fetuses demonstrated elevated VEGF concentrations from day 90-109 of gestation. Concentrations from non-pregnant and postpartum ewes did not differ (P > 0.1). While there was no effect of fetal number on circulating VEGF concentrations, circulating levels of NOx were substantially increased (P < 0.05) in ewes carrying multiple fetuses, compared to ewes carrying singletons. The pattern of the rise in NOx in circulating plasma was not directly associated with changes in VEGF regardless of the number of fetuses present. However, circulating concentrations of NOx and VEGF appear to, respectively, follow patterns of uterine blood flow and angiogenesis of the uterus. An understanding of these circulatory patterns may have important implications for fetal size, birth weight and fetal/developmental origins of adult disease.


Subject(s)
Gestational Age , Nitric Oxide/blood , Pregnancy, Animal/blood , Vascular Endothelial Growth Factor A/blood , Animals , Female , Pregnancy , Sheep
9.
J Investig Med ; 52(2): 129-36, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15068229

ABSTRACT

BACKGROUND: Insulin increases endothelial nitric oxide (NO) production by activating endothelial nitric oxide synthase (eNOS) through protein kinase B (Akt)-mediated phosphorylation of serine residue 1179 (p-eNOS serine 1179). Because fatty acids modulate insulin-stimulated Akt signaling cascades in smooth muscle cells, we hypothesized that fatty acids would differentially regulate endothelial Akt signaling, eNOS phosphorylation, and NO production. METHODS: Porcine pulmonary artery endothelial cells (PAECs) were treated for 3 hours with 100 microM oleic (18:1) or eicosapentaenoic (20:5) acids or with an equivalent volume of ethanol vehicle (0.1%). PAECs were then treated with graded concentrations (10(9)-10(-5) M) of insulin or incubated overnight (24 hours) in culture medium without fatty acids before insulin treatment. Activation and phosphorylation of Akt and eNOS were determined by immunoblotting. NO production was measured with a chemiluminescence NO analyzer or with a NO-selective carbon fiber microelectrode. RESULTS: Insulin-stimulated Akt phosphorylation, eNOS phosphorylation, and NO production. The phosphatidylinositol-3 kinase inhibitor wortmannin attenuated insulin-stimulated Akt activation and NO production. Treatment with the omega-3 fatty acid 20:5, but not 18:1, enhanced insulin-stimulated NO production but failed to alter insulin-stimulated Akt activation or eNOS serine 1179 phosphorylation. CONCLUSION: Individual fatty acyl species have distinct effects on insulin-stimulated endothelial NO production. Although fatty acids alter Akt signaling in muscle cells, the current results indicate that fatty acids do not modulate endothelial NO production through alterations in insulin-stimulated, Akt-mediated eNOS phosphorylation.


Subject(s)
Endothelium, Vascular/drug effects , Fatty Acids/pharmacology , Insulin/pharmacology , Nitric Oxide/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/metabolism , Androstadienes/pharmacology , Animals , Blotting, Western , Cells, Cultured , Dose-Response Relationship, Drug , Drug Combinations , Eicosapentaenoic Acid , Endothelium, Vascular/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Unsaturated/pharmacology , Oleic Acid/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Pulmonary Artery , Swine , Wortmannin
10.
Biol Reprod ; 66(2): 468-74, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11804964

ABSTRACT

During ovine pregnancy, when both estrogen and progesterone are elevated, prostacyclin (PGI2) production by uterine arteries and the key enzymes for PGI2 production, phospholipase A2 (cPLA2), cyclooxygenase 1 (COX-1), and prostacyclin synthetase (PGIS), are increased. This study was conducted to determine whether exogenous estradiol-17beta (E2beta) with or without progesterone (P4) treatment would increase cPLA2, COX-1, and PGIS protein expression in ovine uterine, mammary, and systemic (renal, mental, and coronary) arteries. Nonpregnant ovariectomized sheep received vehicle (n = 10), P(4) (0.9-g controlled internal drug release vaginal implants; n = 13), E2beta (5 microg/kg bolus followed by 6 microg x kg(-1) x day(-1); n = 10), or P4 + E2beta (n = 12). Arteries were procured on Day 10, and cPLA2, COX-1, and PGIS protein were measured by Western immunoblot analysis in endothelial isolated proteins and vascular smooth muscle (VSM). The levels of cPLA2 was increased in uterine artery endothelium in ewes treated with P4 + E2beta but was not altered by any steroid treatment in renal, coronary, mammary, or omental artery endothelium or in VSM of any evaluated artery. Similarly, COX-1 was increased in uterine artery endothelium with P4 + E2beta but was not significantly altered by treatment in other endothelium or VSM. E2beta treatment increased PGIS protein in uterine and renal artery endothelium but did not alter PGIS in other endothelial tissue. P4 increased PGIS expression in the uterine, mammary, omental, and renal artery VSM, and E2beta increased PGIS expression in the uterine and omental artery VSM. Both E2beta and P4 treatments differentially alter protein expression of the key enzymes involved in PGI2 production in different artery types and may play an important role in the control of blood flow redistribution during hormone replacement therapy.


Subject(s)
Arteries/metabolism , Cytochrome P-450 Enzyme System/biosynthesis , Endothelium, Vascular/metabolism , Estrogens/pharmacology , Intramolecular Oxidoreductases/biosynthesis , Isoenzymes/biosynthesis , Phospholipases A/biosynthesis , Progesterone/pharmacology , Prostaglandin-Endoperoxide Synthases/biosynthesis , Uterus/metabolism , Vasodilation/physiology , Animals , Blotting, Western , Cyclooxygenase 1 , Endothelium, Vascular/physiology , Female , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Ovariectomy , Phospholipases A2 , Pregnancy , Regional Blood Flow/physiology , Sheep , Uterus/blood supply
SELECTION OF CITATIONS
SEARCH DETAIL
...