Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 9: 1268, 2019.
Article in English | MEDLINE | ID: mdl-31824848

ABSTRACT

Interfering with tumor metabolism by specifically restricting the availability of extracellular nutrients is a rapidly emerging field of cancer research. A variety of tumor entities depend on the uptake of the amino acid arginine since they have lost the ability to synthesize it endogenously, that is they do not express the rate limiting enzyme for arginine synthesis, argininosuccinate synthase (ASS). Arginine transport through the plasma membrane of mammalian cells is mediated by eight different transporters that belong to two solute carrier (SLC) families. In the present study we found that the proliferation of primary as well as immortalized chronic lymphocytic leukemia (CLL) cells depends on the availability of extracellular arginine and that primary CLL cells do not express ASS and are therefore arginine-auxotrophic. The cationic amino acid transporter-1 (CAT-1) was the only arginine importer expressed in CLL cells. Lentiviral-mediated downregulation of the CAT-1 transporter in HG3 CLL cells significantly reduced arginine uptake, abolished cell proliferation and impaired cell viability. In a murine CLL xenograft model, tumor growth was significantly suppressed upon induced downregulation of CAT-1 in the CLL cells. Our results suggest that inhibition of CAT-1 is a promising new therapeutic approach for CLL.

2.
Front Immunol ; 8: 864, 2017.
Article in English | MEDLINE | ID: mdl-28791021

ABSTRACT

In the tumor microenvironment, arginine is metabolized by arginase-expressing myeloid cells. This arginine depletion profoundly inhibits T cell functions and is crucially involved in tumor-induced immunosuppression. Reconstitution of adaptive immune functions in the context of arginase-mediated tumor immune escape is a promising therapeutic strategy to boost the immunological antitumor response. Arginine can be recycled in certain mammalian tissues from citrulline via argininosuccinate (ASA) in a two-step enzymatic process involving the enzymes argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL). Here, we demonstrate that anti-CD3/anti-CD28-activated human primary CD4+ and CD8+ T cells upregulate ASS expression in response to low extracellular arginine concentrations, while ASL is expressed constitutively. ASS expression peaked under moderate arginine restriction (20 µM), but no relevant induction was detectable in the complete absence of extracellular arginine. The upregulated ASS correlated with a reconstitution of T cell proliferation upon supplementation of citrulline, while the suppressed production of IFN-γ was refractory to citrulline substitution. In contrast, ASA reconstituted proliferation and cytokine synthesis even in the complete absence of arginine. By direct quantification of intracellular metabolites we show that activated primary human T cells import citrulline but only metabolize it further to ASA and arginine when ASS is expressed in the context of low amounts of extracellular arginine. We then clarify that citrulline transport is largely mediated by the L-type amino acid transporter 1 (LAT1), induced upon human T cell activation. Upon siRNA-mediated knockdown of LAT1, activated T cells lost the ability to import citrulline. These data underline the potential of citrulline substitution as a promising pharmacological way to treat immunosuppression in settings of arginine deprivation.

3.
Eur J Immunol ; 46(1): 92-103, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26449889

ABSTRACT

Availability of the semiessential amino acid arginine is fundamental for the efficient function of human T lymphocytes. Tumor-associated arginine deprivation, mainly induced by myeloid-derived suppressor cells, is a central mechanism of tumor immune escape from T-cell-mediated antitumor immune responses. We thus assumed that transmembranous transport of arginine must be crucial for T-cell function and studied which transporters are responsible for arginine influx into primary human T lymphocytes. Here, we show that activation via CD3 and CD28 induces arginine transport into primary human T cells. Both naïve and memory CD4(+) T cells as well as CD8(+) T cells specifically upregulated the human cationic amino acid transporter-1 (hCAT-1), with an enhanced and persistent expression under arginine starvation. When hCAT-1 induction was suppressed via siRNA transfection, arginine uptake, and cellular proliferation were impaired. In summary, our results demonstrate that hCAT-1 is a key component of efficient T-cell activation and a novel potential target structure to modulate adaptive immune responses in tumor immunity or inflammation.


Subject(s)
Arginine/metabolism , Cationic Amino Acid Transporter 1/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Blotting, Western , Cationic Amino Acid Transporter 1/metabolism , Cell Proliferation , Cells, Cultured , Humans , RNA, Small Interfering , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism , Transfection
4.
Amino Acids ; 47(12): 2647-58, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26215737

ABSTRACT

Cationic amino acid transporters (CATs) mediate the entry of L-type cationic amino acids (arginine, ornithine and lysine) into the cells including neurons. CAT-3, encoded by the SLC7A3 gene on chromosome X, is one of the three CATs present in the human genome, with selective expression in brain. SLC7A3 is highly intolerant to variation in humans, as attested by the low frequency of deleterious variants in available databases, but the impact on variants in this gene in humans remains undefined. In this study, we identified a missense variant in SLC7A3, encoding the CAT-3 cationic amino acid transporter, on chromosome X by exome sequencing in two brothers with autism spectrum disorder (ASD). We then sequenced the SLC7A3 coding sequence in 148 male patients with ASD and identified three additional rare missense variants in unrelated patients. Functional analyses of the mutant transporters showed that two of the four identified variants cause severe or moderate loss of CAT-3 function due to altered protein stability or abnormal trafficking to the plasma membrane. The patient with the most deleterious SLC7A3 variant had high-functioning autism and epilepsy, and also carries a de novo 16p11.2 duplication possibly contributing to his phenotype. This study shows that rare hypomorphic variants of SLC7A3 exist in male individuals and suggest that SLC7A3 variants possibly contribute to the etiology of ASD in male subjects in association with other genetic factors.


Subject(s)
Amino Acid Transport Systems, Basic/genetics , Autism Spectrum Disorder/genetics , Amino Acid Sequence , Animals , Biotinylation , Brain/metabolism , Cell Membrane/metabolism , Child , Chromosomes, Human, X/genetics , Epilepsy/complications , Epilepsy/genetics , Gene Frequency , Humans , Loss of Heterozygosity , Male , Molecular Conformation , Molecular Sequence Data , Mutation , Mutation, Missense , Oocytes/metabolism , Pedigree , Phenotype , Xenopus laevis
5.
J Biol Chem ; 287(36): 30853-60, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22787143

ABSTRACT

In human skin fibroblasts, a lysosomal transport system specific for cationic amino acids has been described and named system c. We asked if SLC7A14 (solute carrier family 7 member A14), an orphan protein assigned to the SLC7 subfamily of cationic amino acid transporters (CATs) due to sequence homology, may represent system c. Fusion proteins between SLC7A14 and enhanced GFP localized to intracellular vesicles, co-staining with the lysosomal marker LysoTracker(®). To perform transport studies, we first tried to redirect SLC7A14 to the plasma membrane (by mutating putative lysosomal targeting motifs) but without success. We then created a chimera carrying the backbone of human (h) CAT-2 and the protein domain of SLC7A14 corresponding to the so-called "functional domain" of the hCAT proteins, a protein stretch of 81 amino acids that determines the apparent substrate affinity, sensitivity to trans-stimulation, and (as revealed in this study) pH dependence. The chimera mediated arginine transport and exhibited characteristics similar but not identical to hCAT-2A (the low affinity hCAT-2 isoform). Western blot and microscopic analyses confirmed localization of the chimera in the plasma membrane of Xenopus laevis oocytes. Noticeably, arginine transport by the hCAT-2/SLC7A14 chimera was pH-dependent, trans-stimulated, and inhibited by α-trimethyl-L-lysine, properties assigned to lysosomal transport system c in human skin fibroblasts. Expression analysis showed strong expression of SLC7A14 mRNA in these cells. Taken together, these data strongly suggest that SLC7A14 is a lysosomal transporter for cationic amino acids.


Subject(s)
Amino Acid Transport Systems, Basic/metabolism , Arginine/metabolism , Fibroblasts/metabolism , Lysosomes/metabolism , Skin/metabolism , Amino Acid Transport Systems, Basic/genetics , Animals , Arginine/genetics , Biological Transport, Active/physiology , Cell Line , Fibroblasts/cytology , Humans , Hydrogen-Ion Concentration , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Skin/cytology , Xenopus laevis
6.
Biochim Biophys Acta ; 1668(2): 234-9, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15737334

ABSTRACT

hCAT-3 (human cationic amino acid transporter type three) was investigated with both the two-electrode voltage clamp method and tracer experiments. Oocytes expressing hCAT-3 displayed less negative membrane potentials and larger voltage-dependent currents than native or water-injected oocytes did. Ion substitution experiments in hCAT-3-expressing oocytes revealed a large conductance for Na+ and K+. In the presence of L-Arg, voltage-dependent inward and outward currents were observed. At symmetrical (inside/outside) concentrations of L-Arg, the conductance of the transporter increased monoexponentially with the L-Arg concentrations; the calculated Vmax and KM values amounted to 8.3 microS and 0.36 mM, respectively. The time constants of influx and efflux of [3H]L-Arg, at symmetrically inside/outside L-Arg concentrations (1 mM), amounted to 79 and 77 min, respectively. The flux data and electrophysiological experiments suggest that the transport of L-Arg through hCAT-3 is symmetric, when the steady state of L-Arg flux has been reached. It is concluded that hCAT-3 is a passive transport system that conducts monovalent cations including L-Arg. The particular role of hCAT-3 in the diverse tissues remains to be elucidated.


Subject(s)
Cationic Amino Acid Transporter 1/metabolism , Membrane Potentials/physiology , Oocytes/physiology , Potassium/metabolism , Sodium/metabolism , Animals , Arginine/pharmacology , Cations, Monovalent , Electric Conductivity , Humans , Membrane Potentials/drug effects , Oocytes/drug effects , Recombinant Proteins/metabolism , Xenopus laevis
7.
RNA ; 10(3): 516-27, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14970396

ABSTRACT

The neuropeptide nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid receptor-like 1 (ORL1) receptor, has been shown to play a prominent role in the regulation of several biological functions such as pain and stress. Here we describe the isolation and characterization of N/OFQ binding biostable RNA aptamers (Spiegelmers) using a mirror-image in vitro selection approach. Spiegelmers are L-enantiomeric oligonucleotide ligands that display high affinity and specificity to their targets and high resistance to enzymatic degradation compared to D-oligonucleotides. A representative Spiegelmer from the selections performed was size-minimized to two distinct sequences capable of high affinity binding to N/OFQ. The Spiegelmers were shown to antagonize binding of N/OFQ to the ORL1 receptor in a binding-competition assay. The calculated IC(50) values for the Spiegelmers NOX 2149 and NOX 2137a/b were 110 nM and 330 nM, respectively. The competitive antagonistic properties of these Spiegelmers were further demonstrated by their effective and specific inhibition of G-protein activation in two additional models. The Spiegelmers antagonized the N/OFQ-induced GTPgammaS incorporation into cell membranes of a CHO-K1 cell line expressing the human ORL1 receptor. In oocytes from Xenopus laevis, NOX 2149 showed an antagonistic effect to the N/OFQ-ORL 1 receptor system that was functionally coupled with G-protein-regulated inwardly rectifying K(+) channels.


Subject(s)
Opioid Peptides/antagonists & inhibitors , RNA/metabolism , Animals , Base Sequence , Humans , Ligands , Molecular Sequence Data , Nucleic Acid Conformation , Oocytes , Receptors, Opioid/metabolism , Tritium/metabolism , Xenopus , Nociceptin Receptor , Nociceptin
8.
Pharmacology ; 69(1): 38-43, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12886029

ABSTRACT

The vanilloid receptor 1 (VR1) is a heat-activated cation channel which also responds to capsaicin and other chemical stimuli. Protein kinase C has a stimulatory effect on VR1 activity, either alone or after activation with capsaicin. The influence of the cAMP-signaling pathway on the effects of capsaicin is controversial. To clarify this, the actions of capsaicin and the modulatory effects of forskolin, pCPT-cAMP, and isobutylmethylxanthine were studied in Xenopus laevis oocytes expressing rat VR1 and in CHO cells expressing human VR1. Capsaicin activated the VR1 channel and increased the intracellular calcium concentration. The effects of capsaicin were enhanced by forskolin, pCPT-cAMP, and isobutylmethylxanthine. A modulatory function of the cAMP system on VR1 activation could, therefore, modulate heat sensation and pain.


Subject(s)
CHO Cells , Cyclic AMP/analogs & derivatives , Cyclic AMP/metabolism , Ion Channels , Oocytes/drug effects , Protein Kinase C/physiology , Receptors, Drug/drug effects , Receptors, Drug/genetics , Xenopus laevis , 1-Methyl-3-isobutylxanthine/pharmacology , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Calcium Signaling/genetics , Capsaicin/pharmacology , Colforsin/pharmacology , Cricetinae , Cyclic AMP/pharmacology , Enzyme Activation , Patch-Clamp Techniques , Protein Kinase C/pharmacology , Rats , Receptors, Drug/physiology , TRPV Cation Channels , Thionucleotides/pharmacology
9.
Biochem Biophys Res Commun ; 291(2): 421-4, 2002 Feb 22.
Article in English | MEDLINE | ID: mdl-11846422

ABSTRACT

ClC chloride channels are important in diverse physiological functions such as transepithelial transport, cell volume regulation, excitability, and acidification of intracellular organelles. We have investigated the expression of CLC-7 in oocytes from Xenopus laevis with the two electrode voltage clamp technique and Western blot analysis. Using a specific antibody against CLC-7, we found an approximately 80 kDa protein in oocytes, previously injected with CLC-7-cRNA. In voltage clamp experiments on ClC-7-cRNA-injected oocytes, no current changes were detected at normal pH (7.4). However, acidification of the Ringer solution to pH values between 6 and 4 revealed strong currents which reversed at about -15 mV (30 mV positive to the normal resting potential) and showed strong outward rectification. We therefore suggest that ClC-7 in oocytes is a functional chloride current at acidic pH. Since ClC-7 is also found in neuronal tissues and was upregulated in a rat pain model, we suggest a role of CLC-7 also for nociception and pain.


Subject(s)
Chloride Channels/metabolism , Hydrogen-Ion Concentration , Animals , Blotting, Western , Electric Conductivity , Oocytes/metabolism , Patch-Clamp Techniques , Rats , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...