Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683993

ABSTRACT

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Myocardial Contraction , Myocytes, Cardiac , Myosin Heavy Chains , Humans , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocardial Contraction/genetics , Mutation , Mitochondria/metabolism , Mitochondria/genetics , Myofibrils/metabolism , Cell Respiration/genetics
2.
bioRxiv ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38464145

ABSTRACT

At the molecular level, clinical hypercontractility associated with many hypertrophic cardiomyopathy (HCM)-causing mutations in beta-cardiac myosin appears to be driven by their disruptive effect on the energy-conserving, folded-back, super relaxed (SRX) OFF-state of myosin. A pathological increase in force production results from release of heads from this OFF-state, which results in an increase in the number of heads free to interact with actin and produce force. Pathogenic mutations in myosin can conceivably disrupt the OFF-state by (1) directly affecting the intramolecular interfaces stabilizing the folded-back state, or (2) allosterically destabilizing the folded-back state via disruption of diverse conformational states of the myosin motor along its chemomechanical cycle. However, very little is understood about the mutations that fall in the latter group. Here, using recombinant human beta-cardiac myosin, we analysed the biomechanical properties of two such HCM-causing mutations, Y115H (in the transducer) and E497D (in the relay helix), neither of which falls in the regions that interact to stabilize the myosin folded-back state. We find these mutations have diverse effects on the contractility parameters of myosin, yet the primary hypercontractile change in both cases is the destabilization of the OFF-state of myosin and increased availability of active myosin heads for actin-binding. Experimental data and molecular dynamics simulations indicate that these mutations likely destabilize the pre-powerstroke state of myosin, the conformation the motor adopts in the inactive folded-back state. We propose that destabilization of the folded-back state of myosin, directly and/or allosterically, is the molecular basis of hypercontractility in HCM in a far greater number of pathogenic mutations than currently thought.

3.
Proc Natl Acad Sci U S A ; 121(9): e2315472121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377203

ABSTRACT

Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in ß-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman-Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human ß, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in ß myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in ß myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not ß, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin's highly allosteric nature.


Subject(s)
Myosins , Ventricular Myosins , Humans , Ventricular Myosins/genetics , Myosins/metabolism , Adenosine Triphosphatases/metabolism , Mutation , Actins/metabolism , Muscle, Skeletal/metabolism
4.
Methods Mol Biol ; 2735: 169-189, 2024.
Article in English | MEDLINE | ID: mdl-38038849

ABSTRACT

Calcium-dependent activation of the thin filament mediated by the troponin-tropomyosin complex is key in the regulation of actin-myosin based muscle contraction. Perturbations to this system, either physiological (e.g., phosphorylation of myosin light chains) or pathological (e.g., mutations that cause familial cardiomyopathies), can alter calcium sensitivity and thus have important implications in human health and disease. The in vitro motility assay provides a quantitative and precise method to study the calcium sensitivity of the reconstituted myosin-thin filament motile system. Here we present a simple and robust protocol to perform calcium-dependent motility of ß-cardiac myosin and regulated thin filaments. The experiment is done on a multichannel microfluidic slide requiring minimal amounts of proteins. A complete velocity vs. calcium concentration curve is produced from one experiment in under 1 h.


Subject(s)
Calcium , Myosins , Humans , Calcium/metabolism , Myosins/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Tropomyosin/metabolism , Muscle Contraction/physiology
5.
bioRxiv ; 2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37425764

ABSTRACT

Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in ß-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known if their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human ß, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins, with the most dramatic in perinatal, but minimal effects in ß myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing ATPase cycle rate. In contrast, the only measured effect of R671C in ß myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not ß, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents the first direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are yet another testament to myosin's highly allosteric nature.

6.
Nat Commun ; 14(1): 3166, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37258552

ABSTRACT

To save energy and precisely regulate cardiac contractility, cardiac muscle myosin heads are sequestered in an 'off' state that can be converted to an 'on' state when exertion is increased. The 'off' state is equated with a folded-back structure known as the interacting-heads motif (IHM), which is a regulatory feature of all class-2 muscle and non-muscle myosins. We report here the human ß-cardiac myosin IHM structure determined by cryo-electron microscopy to 3.6 Å resolution, providing details of all the interfaces stabilizing the 'off' state. The structure shows that these interfaces are hot spots of hypertrophic cardiomyopathy mutations that are thought to cause hypercontractility by destabilizing the 'off' state. Importantly, the cardiac and smooth muscle myosin IHM structures dramatically differ, providing structural evidence for the divergent physiological regulation of these muscle types. The cardiac IHM structure will facilitate development of clinically useful new molecules that modulate IHM stability.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Hypertrophic , Humans , Ventricular Myosins/chemistry , Ventricular Myosins/genetics , Cryoelectron Microscopy , Heart , Cardiomyopathy, Hypertrophic/genetics
7.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131793

ABSTRACT

During normal levels of exertion, many cardiac muscle myosin heads are sequestered in an off-state even during systolic contraction to save energy and for precise regulation. They can be converted to an on-state when exertion is increased. Hypercontractility caused by hypertrophic cardiomyopathy (HCM) myosin mutations is often the result of shifting the equilibrium toward more heads in the on-state. The off-state is equated with a folded-back structure known as the interacting head motif (IHM), which is a regulatory feature of all muscle myosins and class-2 non-muscle myosins. We report here the human ß-cardiac myosin IHM structure to 3.6 Å resolution. The structure shows that the interfaces are hot spots of HCM mutations and reveals details of the significant interactions. Importantly, the structures of cardiac and smooth muscle myosin IHMs are dramatically different. This challenges the concept that the IHM structure is conserved in all muscle types and opens new perspectives in the understanding of muscle physiology. The cardiac IHM structure has been the missing puzzle piece to fully understand the development of inherited cardiomyopathies. This work will pave the way for the development of new molecules able to stabilize or destabilize the IHM in a personalized medicine approach. *This manuscript was submitted to Nature Communications in August 2022 and dealt efficiently by the editors. All reviewers received this version of the manuscript before 9 208 August 2022. They also received coordinates and maps of our high resolution structure on the 18 208 August 2022. Due to slowness of at least one reviewer, this contribution was delayed for acceptance by Nature Communications and we are now depositing in bioRxiv the originally submitted version written in July 2022 for everyone to see. Indeed, two bioRxiv contributions at lower resolution but adding similar concepts on thick filament regulation were deposited this week in bioRxiv, one of the contributions having had access to our coordinates. We hope that our data at high resolution will be helpful for all readers that appreciate that high resolution information is required to build accurate atomic models and discuss implications for sarcomere regulation and the effects of cardiomyopathy mutations on heart muscle function.

8.
Front Physiol ; 13: 975076, 2022.
Article in English | MEDLINE | ID: mdl-36225299

ABSTRACT

Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 people in the general population with an extensive burden of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery of the genetic underpinnings of HCM, the field has unveiled significant insights into the primary effects of these genetic mutations, especially for the myosin heavy chain gene, which is one of the most commonly mutated genes. Our group has studied the molecular effects of HCM mutations on human ß-cardiac myosin heavy chain using state-of-the-art biochemical and biophysical tools for the past 10 years, combining insights from clinical genetics and structural analyses of cardiac myosin. The overarching hypothesis is that HCM-causing mutations in sarcomere proteins cause hypercontractility at the sarcomere level, and we have shown that an increase in the number of myosin molecules available for interaction with actin is a primary driver. Recently, two pharmaceutical companies have developed small molecule inhibitors of human cardiac myosin to counteract the molecular consequences of HCM pathogenesis. One of these inhibitors (mavacamten) has recently been approved by the FDA after completing a successful phase III trial in HCM patients, and the other (aficamten) is currently being evaluated in a phase III trial. Myosin inhibitors will be the first class of medication used to treat HCM that has both robust clinical trial evidence of efficacy and that targets the fundamental mechanism of HCM pathogenesis. The success of myosin inhibitors in HCM opens the door to finding other new drugs that target the sarcomere directly, as we learn more about the genetics and fundamental mechanisms of this disease.

9.
Elife ; 112022 06 29.
Article in English | MEDLINE | ID: mdl-35767336

ABSTRACT

Mutations in the lever arm of ß-cardiac myosin are a frequent cause of hypertrophic cardiomyopathy, a disease characterized by hypercontractility and eventual hypertrophy of the left ventricle. Here, we studied five such mutations: three in the pliant region of the lever arm (D778V, L781P, and S782N) and two in the light chain-binding region (A797T and F834L). We investigated their effects on both motor function and myosin subfragment 2 (S2) tail-based autoinhibition. The pliant region mutations had varying effects on the motor function of a myosin construct lacking the S2 tail: overall, D778V increased power output, L781P reduced power output, and S782N had little effect on power output, while all three reduced the external force sensitivity of the actin detachment rate. With a myosin containing the motor domain and the proximal S2 tail, the pliant region mutations also attenuated autoinhibition in the presence of filamentous actin but had no impact in the absence of actin. By contrast, the light chain-binding region mutations had little effect on motor activity but produced marked reductions in autoinhibition in both the presence and absence of actin. Thus, mutations in the lever arm of ß-cardiac myosin have divergent allosteric effects on myosin function, depending on whether they are in the pliant or light chain-binding regions.


Subject(s)
Cardiomyopathy, Hypertrophic , Ventricular Myosins , Actins/genetics , Actins/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Humans , Mutation , Structure-Activity Relationship , Ventricular Myosins/chemistry , Ventricular Myosins/genetics , Ventricular Myosins/metabolism
10.
Circulation ; 144(21): 1714-1731, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34672721

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM. METHODS: We performed a comprehensive multiomics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts). RESULTS: Integrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites (ATP, ADP, and phosphocreatine) and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance. CONCLUSIONS: Overall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury.


Subject(s)
Cardiomyopathy, Hypertrophic/etiology , Cardiomyopathy, Hypertrophic/metabolism , Disease Susceptibility , Energy Metabolism , Mitochondria/genetics , Mitochondria/metabolism , Adult , Aged , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/therapy , Cell Respiration/genetics , Computational Biology/methods , Disease Management , Female , Gene Expression Profiling , Heart Function Tests , Humans , Lipidomics , Male , Metabolome , Metabolomics/methods , Middle Aged , Mitochondria/ultrastructure , Mutation , Oxidative Stress , Reactive Oxygen Species , Transcriptome
11.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34117120

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in ß-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/physiopathology , Mutation/genetics , Myocardial Contraction/genetics , Ventricular Myosins/genetics , Actins/metabolism , Animals , Biomechanical Phenomena , Calcium/metabolism , Cell Line , Cell Size , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Models, Biological , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Myofibrils/metabolism
12.
ACS Nano ; 15(6): 10203-10216, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34060810

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies.


Subject(s)
Cardiomyopathy, Hypertrophic , Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Humans , Mutation , Phenotype , Sarcomeres
13.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33035452

ABSTRACT

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Subject(s)
Muscle, Skeletal/metabolism , Skeletal Muscle Myosins/drug effects , Skeletal Muscle Myosins/genetics , Adult , Animals , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cell Line , Drug Delivery Systems , Female , Humans , Male , Mice , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle Spasticity/genetics , Muscle Spasticity/physiopathology , Muscle, Skeletal/physiology , Myosins/drug effects , Myosins/genetics , Myosins/metabolism , Protein Isoforms , Rats , Rats, Wistar , Skeletal Muscle Myosins/metabolism
14.
Sci Adv ; 6(14): eaax0069, 2020 04.
Article in English | MEDLINE | ID: mdl-32284968

ABSTRACT

Hypertrophic cardiomyopathy (HCM) mutations in ß-cardiac myosin and myosin binding protein-C (MyBP-C) lead to hypercontractility of the heart, an early hallmark of HCM. We show that hypercontractility caused by the HCM-causing mutation R663H cannot be explained by changes in fundamental myosin contractile parameters, much like the HCM-causing mutation R403Q. Using enzymatic assays with purified human ß-cardiac myosin, we provide evidence that both mutations cause hypercontractility by increasing the number of functionally accessible myosin heads. We also demonstrate that the myosin mutation R403Q, but not R663H, ablates the binding of myosin with the C0-C7 fragment of MyBP-C. Furthermore, addition of C0-C7 decreases the wild-type myosin basal ATPase single turnover rate, while the mutants do not show a similar reduction. These data suggest that a primary mechanism of action for these mutations is to increase the number of myosin heads functionally available for interaction with actin, which could contribute to hypercontractility.


Subject(s)
Actins/metabolism , Alleles , Amino Acid Substitution , Cardiomyopathy, Hypertrophic/genetics , Mutation , Myosins/genetics , Myosins/metabolism , Actins/chemistry , Binding Sites , Cardiomyopathy, Hypertrophic/physiopathology , Genetic Predisposition to Disease , Humans , Models, Molecular , Myocardial Contraction/genetics , Myosins/chemistry , Protein Binding , Protein Conformation , Structure-Activity Relationship , Ventricular Myosins/genetics
15.
Annu Rev Biochem ; 89: 667-693, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32169021

ABSTRACT

Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human ß-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human ß-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.


Subject(s)
Enzyme Inhibitors/therapeutic use , Heart Failure/drug therapy , Myosins/metabolism , Neoplasms/drug therapy , Nervous System Diseases/drug therapy , Protozoan Infections/drug therapy , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation/drug effects , Animals , Biomechanical Phenomena , Cryptosporidium/drug effects , Cryptosporidium/enzymology , Enzyme Inhibitors/chemistry , Gene Expression , Heart Failure/enzymology , Heart Failure/genetics , Heart Failure/pathology , Humans , Multigene Family , Mutation , Myosins/antagonists & inhibitors , Myosins/classification , Myosins/genetics , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/pathology , Nervous System Diseases/enzymology , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Plasmodium/drug effects , Plasmodium/enzymology , Protozoan Infections/enzymology , Protozoan Infections/genetics , Protozoan Infections/pathology , Toxoplasma/drug effects , Toxoplasma/enzymology
16.
J Biol Chem ; 294(46): 17451-17462, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31582565

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a common genetic disorder characterized by left ventricular hypertrophy and cardiac hyper-contractility. Mutations in the ß-cardiac myosin heavy chain gene (ß-MyHC) are a major cause of HCM, but the specific mechanistic changes to myosin function that lead to this disease remain incompletely understood. Predicting the severity of any ß-MyHC mutation is hindered by a lack of detailed examinations at the molecular level. Moreover, because HCM can take ≥20 years to develop, the severity of the mutations must be somewhat subtle. We hypothesized that mutations that result in early onset disease would have more severe changes in function than do later onset mutations. Here, we performed steady-state and transient kinetic analyses of myosins carrying one of seven missense mutations in the motor domain. Of these seven, four were previously identified in early onset cardiomyopathy screens. We used the parameters derived from these analyses to model the ATP-driven cross-bridge cycle. Contrary to our hypothesis, the results indicated no clear differences between early and late onset HCM mutations. Despite the lack of distinction between early and late onset HCM, the predicted occupancy of the force-holding actin·myosin·ADP complex at [Actin] = 3 Kapp along with the closely related duty ratio (the fraction of myosin in strongly attached force-holding states), and the measured ATPases all changed in parallel (in both sign and degree of change) compared with wildtype (WT) values. Six of the seven HCM mutations were clearly distinct from a set of previously characterized DCM mutations.


Subject(s)
Adenosine Triphosphatases/genetics , Cardiomyopathy, Hypertrophic/genetics , Myosins/genetics , Ventricular Myosins/genetics , Actin Cytoskeleton/genetics , Actins/chemistry , Actins/genetics , Adenosine Triphosphatases/chemistry , Age of Onset , Cardiomyopathy, Hypertrophic/pathology , Female , Humans , Kinetics , Male , Mutation, Missense/genetics , Myocardial Contraction/genetics , Myosin Light Chains/chemistry , Myosin Light Chains/genetics , Myosins/chemistry , Severity of Illness Index , Ventricular Myosins/chemistry
17.
Nat Commun ; 10(1): 2685, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31213605

ABSTRACT

Hypertrophic cardiomyopathy (HCM) affects 1 in 500 people and leads to hyper-contractility of the heart. Nearly 40 percent of HCM-causing mutations are found in human ß-cardiac myosin. Previous studies looking at the effect of HCM mutations on the force, velocity and ATPase activity of the catalytic domain of human ß-cardiac myosin have not shown clear trends leading to hypercontractility at the molecular scale. Here we present functional data showing that four separate HCM mutations located at the myosin head-tail (R249Q, H251N) and head-head (D382Y, R719W) interfaces of a folded-back sequestered state referred to as the interacting heads motif (IHM) lead to a significant increase in the number of heads functionally accessible for interaction with actin. These results provide evidence that HCM mutations can modulate myosin activity by disrupting intramolecular interactions within the proposed sequestered state, which could lead to hypercontractility at the molecular level.


Subject(s)
Cardiac Myosins/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/physiopathology , Myocardial Contraction/genetics , Myosin Heavy Chains/metabolism , Actins/metabolism , Animals , Cardiac Myosins/genetics , Cell Line , Cell Movement/genetics , Heart/physiopathology , Humans , Mice , Mutation , Myoblasts , Myosin Heavy Chains/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 115(35): E8143-E8152, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30104387

ABSTRACT

Mutations in ß-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity, and ATPase activity of myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative model posits that mutations in myosin affect the stability of a sequestered, super relaxed state (SRX) of the protein with very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin. Here we show that purified human ß-cardiac myosin exists partly in an SRX and may in part correspond to a folded-back conformation of myosin heads observed in muscle fibers around the thick filament backbone. Mutations that cause hypertrophic cardiomyopathy destabilize this state, while the small molecule mavacamten promotes it. These findings provide a biochemical and structural link between the genetics and physiology of cardiomyopathy with implications for therapeutic strategies.


Subject(s)
Benzylamines/chemistry , Uracil/analogs & derivatives , Ventricular Myosins/chemistry , Animals , Benzylamines/pharmacology , Cardiomegaly/enzymology , Cardiomegaly/genetics , Humans , Muscle, Skeletal/enzymology , Mutation , Swine , Swine, Miniature , Uracil/chemistry , Uracil/pharmacology , Ventricular Myosins/genetics , Ventricular Myosins/metabolism
19.
Nat Struct Mol Biol ; 25(6): 505-514, 2018 06.
Article in English | MEDLINE | ID: mdl-29867217

ABSTRACT

Concepts in molecular tension sensing in biology are growing and have their origins in studies of muscle contraction. In the heart muscle, a key parameter of contractility is the detachment rate of myosin from actin, which determines the time that myosin is bound to actin in a force-producing state and, importantly, depends on the load (force) against which myosin works. Here we measure the detachment rate of single molecules of human ß-cardiac myosin and its load dependence. We find that both can be modulated by both small-molecule compounds and cardiomyopathy-causing mutations. Furthermore, effects of mutations can be reversed by introducing appropriate compounds. Our results suggest that activating versus inhibitory perturbations of cardiac myosin are discriminated by the aggregate result on duty ratio, average force, and ultimately average power output and suggest that cardiac contractility can be controlled by tuning the load-dependent kinetics of single myosin molecules.


Subject(s)
Ventricular Myosins/metabolism , Actins/metabolism , Animals , Cattle , Dose-Response Relationship, Drug , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Humans , Kinetics , Mutation , Myocardial Contraction , Urea/administration & dosage , Urea/analogs & derivatives , Urea/pharmacology , Ventricular Myosins/genetics
20.
J Biol Chem ; 293(23): 9017-9029, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29666183

ABSTRACT

Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can cause arrhythmias, heart failure, and cardiac death. Here, we functionally characterized the motor domains of five DCM-causing mutations in human ß-cardiac myosin. Kinetic analyses of the individual events in the ATPase cycle revealed that each mutation alters different steps in this cycle. For example, different mutations gave enhanced or reduced rate constants of ATP binding, ATP hydrolysis, or ADP release or exhibited altered ATP, ADP, or actin affinity. Local effects dominated, no common pattern accounted for the similar mutant phenotype, and there was no distinct set of changes that distinguished DCM mutations from previously analyzed HCM myosin mutations. That said, using our data to model the complete ATPase contraction cycle revealed additional critical insights. Four of the DCM mutations lowered the duty ratio (the ATPase cycle portion when myosin strongly binds actin) because of reduced occupancy of the force-holding A·M·D complex in the steady state. Under load, the A·M·D state is predicted to increase owing to a reduced rate constant for ADP release, and this effect was blunted for all five DCM mutations. We observed the opposite effects for two HCM mutations, namely R403Q and R453C. Moreover, the analysis predicted more economical use of ATP by the DCM mutants than by WT and the HCM mutants. Our findings indicate that DCM mutants have a deficit in force generation and force-holding capacity due to the reduced occupancy of the force-holding state.


Subject(s)
Cardiac Myosins/genetics , Cardiomyopathy, Dilated/genetics , Myosin Heavy Chains/genetics , Point Mutation , Actins/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Cardiac Myosins/chemistry , Cardiac Myosins/metabolism , Cardiomyopathy, Dilated/metabolism , Cell Line , Humans , Kinetics , Mice , Models, Molecular , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...