Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(8): 11979-11987, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35916359

ABSTRACT

Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials such as graphene. The performance of graphene-based (opto-)electronic devices depends critically on the properties of the graphene/metal interfaces at the contacting electrodes. The question of how these interface properties depend on the ubiquitous topological defects in graphene is of high practical relevance, but could not be answered so far. Here, we focus on the prototypical Stone-Wales (S-W) topological defect and combine theoretical analysis with experimental investigations of molecular model systems. We show that the embedded defects undergo enhanced bonding and electron transfer with a copper surface, compared to regular graphene. These findings are experimentally corroborated using molecular models, where azupyrene mimics the S-W defect, while its isomer pyrene represents the ideal graphene structure. Experimental interaction energies, electronic-structure analysis, and adsorption distance differences confirm the defect-controlled bonding quantitatively. Our study reveals the important role of defects for the electronic coupling at graphene/metal interfaces and suggests that topological defect engineering can be used for performance control.

2.
Chemphyschem ; 22(11): 1065-1073, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33768634

ABSTRACT

Pyrene derivatives play a prominent role in organic electronic devices, including field effect transistors, light emitting diodes, and solar cells. The flexibility in the desired properties has previously been achieved by variation of substituents at the periphery of the pyrene backbone. In contrast, the influence of the topology of the central π-electron system on the relevant properties such as the band gap or the fluorescence behavior has not yet been addressed. In this work, pyrene is compared with its structural isomer azupyrene, which has a π-electron system with non-alternant topology. Using photoelectron spectroscopy, near edge X-ray absorption fine structure spectroscopy, and other methods, it is shown that the electronic band gap of azupyrene is by 0.72 eV smaller than that of pyrene. The difference of the optical band gaps is even larger with 1.09 eV, as determined by ultraviolet-visible absorption spectroscopy. The non-alternant nature of azupyrene is also associated with a more localized charge distribution. Further insight is provided by density functional theory (DFT) calculations of the molecular properties and ab initio coupled cluster calculations of the optical transitions. The concept of aromaticity is used to interpret the major topology-related differences.

3.
J Am Chem Soc ; 143(14): 5314-5318, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33784083

ABSTRACT

Acepleiadylene (APD), a nonbenzenoid nonalternant isomer of pyrene, exhibits different electronic properties from pyrene, but has been rarely studied since its first synthesis in 1956, probably due to the difficulties in synthesis and further derivatization. In this work, we revisited this long-known compound and developed a new two-step synthetic route to efficiently access APD on the gram scale. Theoretical and experimental characterizations elucidated the unique properties of APD as compared with its benzenoid isomer pyrene, particularly revealing its dipolar structure with a narrow optical gap. The functionalization of APD was demonstrated for the first time, providing doubly brominated APD as a key precursor for further π-extension. As a proof of concept, a π-extended APD and a cyclotrimer nanographene (C48H24) were constructed, opening up new avenues to nonbenzenoid nanographenes with low HOMO-LUMO gaps.

4.
Chemistry ; 25(68): 15656-15661, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31544988

ABSTRACT

The binary lead fluoride Pb3 F8 was synthesized by the reaction of anhydrous HF with Pb3 O4 or by the reaction of BrF3 with PbF2 . The compound was characterized by single-crystal and powder X-ray diffraction, IR, Raman, and solid-state MAS 19 F NMR spectroscopy, as well as thermogravimetric analysis, XP and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Solid-state quantum-chemical calculations are provided for the vibrational analyses and band assignments. The electronic band structure offers an inside view of the mixed valence compound.

5.
Nanoscale ; 9(34): 12461-12469, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28813050

ABSTRACT

Heptacene was generated by surface-assisted didecarbonylation of an α-diketone precursor on a Ag(111) surface. Monitoring of the surface reaction and characterization of the adsorbed heptacene was performed with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and density functional theory (DFT) calculations. The surface-assisted formation of heptacene occurs around 460 K. Both the heptacene and the precursor molecules are oriented along the high-symmetry directions of the (111) surface and their molecular π systems face towards the substrate. The interaction with the Ag(111) substrate is not laterally uniform, but appears to be strongest on the central part of the molecule, in line with the expectations from Clar's rule. In the STM images, heptacene shows a dumbbell shape, which may correspond to the substantial out-of-plane deformations of heptacene on Ag(111). As revealed by DFT, the center of the molecule is closer to the surface than the outer parts. In addition, the inner rings are most affected by charge redistribution between surface and molecule. Heptacene acts as an acceptor and receives a negative charge of -0.6e from the Ag(111) surface. Since vacuum-sublimable α-diketone precursors for even larger acenes are available, the approach is promising for the on-surface synthesis of higher acene homologues such as octacene and nonacene.

SELECTION OF CITATIONS
SEARCH DETAIL
...