Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 10: 885180, 2022.
Article in English | MEDLINE | ID: mdl-35795217

ABSTRACT

The involvement of Myelin Basic Protein (MBP) in Multiple Sclerosis (MS) has been widely discussed in the literature. This intrinsically disordered protein has an interesting α-helix motif, which can be considered as a conformational epitope. In this work we investigate the importance of the helical structure in antibody recognition by MBP peptides of different lengths. Firstly, we synthesized the peptide MBP (81-106) (1) and observed that its elongation at both N- and C-termini, to obtain the peptide MBP (76-116) (2) improves IgM antibody recognition in SP-ELISA, but destabilizes the helical structure. Conversely, in competitive ELISA, MBP (81-106) (1) is recognized more efficiently by IgM antibodies than MBP (76-116) (2), possibly thanks to its more stable helical structure observed in CD and NMR conformational experiments. These results are discussed in terms of different performances of peptide antigens in the two ELISA formats tested.

2.
Sci Rep ; 11(1): 16393, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385564

ABSTRACT

Immune response to biologics treatment, while widely reported, yet fails to correlate with clinical outcomes and assay to assay comparison is often not possible. Hence, we developed a new peptide based-detection assay to stratify pediatric patients with juvenile idiopathic arthritis (JIA) or chronic non-infectious uveitis (CNU) and monitor anti-drug antibodies (ADAbs) formed as part of an immune response to treatment with the fully human monoclonal therapeutic antibody Adalimumab. Adalimumab derived synthetic peptides were optimized for maximum immunogenicity and were tested by SP-ELISA on a development cohort of 18 JIA and CNU treated patients. The two best performing peptides able to differentiate patient groups were selected for evaluation with a larger scale ELISA testing on a total of 29 sera from pediatric patients with JIA or CNU. The results of this peptide-based assay were compared to an in-house developed SPR biosensor ADAbs assay and a commercially available bridging ELISA. The first peptide, termed HC3, was able to positively detect ADAbs in 7 out of the 29 sera, while the second peptide, called LC3, was able to detect ADAbs in 11 out of 29 sera in the evaluation group. Following statistical data evaluation, it has been found that the detection of ADAbs using the peptide-based ELISA assay positively correlates with disease progression and remission. Two synthetic peptides derived from Adalimumab may provide a beneficial tool to clinicians for monitoring patient response to such treatment and taking informed decisions for treatment alternatives.


Subject(s)
Adalimumab/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Arthritis, Juvenile/drug therapy , Biological Products/therapeutic use , Immunity/drug effects , Peptides/therapeutic use , Uveitis/drug therapy , Amino Acid Sequence , Antirheumatic Agents/therapeutic use , Biological Factors/therapeutic use , Child , Cohort Studies , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male
3.
Anal Bioanal Chem ; 411(2): 439-448, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30498982

ABSTRACT

Tuberculosis (TB) is the first cause of death from infectious diseases worldwide. Only a single anti-TB vaccine is currently available for clinical use, but its efficacy is not achieved with certainty. The aim of this work is to provide a basis for the rational design of a neo-glycoconjugate vaccine against TB. Structural characterization of recombinant antigenic proteins from Mycobacterium tuberculosis (MTB) Ag85B (rAg85B, variants, and semi-synthetic glycoconjugates) was initially carried out. Identification of antibody epitope analyses by proteolytic affinity-mass spectrometry and surface plasmon resonance (SPR) biosensor analyses were performed in order to qualitatively identify and quantitatively characterize interaction structures of the antigens with antibodies from different sources. A commercial monoclonal antibody and polyclonal antibodies from different sources (patients with active TB, vaccinated individuals, and a healthy control) were employed to analyze antigen-antibody interactions. These combined approaches provided the identification of different assembled epitope regions on the recombinant MTB antigens, their affinity binding constants in the interactions with specific antibodies, and revealed the importance of protection from excessive glycosylation. The identified epitope peptides should constitute a suitable basis for the design of new specific target vaccines. Graphical abstract ᅟ.


Subject(s)
Antibodies, Bacterial , Antibody Affinity , Antigens, Bacterial , Epitopes/chemistry , Mass Spectrometry/methods , Mycobacterium tuberculosis/metabolism , Amino Acid Sequence , Biosensing Techniques , Models, Molecular , Protein Conformation , Proteolysis
4.
ChemMedChem ; 13(9): 909-915, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29473701

ABSTRACT

α-Galactosidase (αGal) is a lysosomal enzyme that hydrolyses the terminal α-galactosyl moiety from glycosphingolipids. Mutations in the encoding genes for αGal lead to defective or misfolded enzyme, which results in substrate accumulation and subsequent organ dysfunction. The metabolic disease caused by a deficiency of human α-galactosidase A is known as Fabry disease or Fabry-Anderson disease, and it belongs to a larger group known as lysosomal storage diseases. An effective treatment for Fabry disease has been developed by enzyme replacement therapy (ERT), which involves infusions of purified recombinant enzyme in order to increase enzyme levels and decrease the amounts of accumulated substrate. However, immunoreactivity and IgG antibody formation are major, therapy-limiting, and eventually life-threatening complications of ERT. The present study focused on the epitope determination of human α-galactosidase A against its antibody formed. Here we report the identification of the epitope of human αGal(309-332) recognized by a human monoclonal anti-αGal antibody, using a combination of proteolytic excision of the immobilized immune complex and surface plasmon resonance biosensing mass spectrometry. The epitope peptide, αGal(309-332), was synthesized by solid-phase peptide synthesis. Determination of its affinity by surface plasmon resonance analysis revealed a high binding affinity for the antibody (KD =39×10-9 m), which is nearly identical to that of the full-length enzyme (KD =16×10-9 m). The proteolytic excision affinity mass spectrometry method is shown here to be an efficient tool for epitope identification of an immunogenic lysosomal enzyme. Because the full-length αGal and the antibody epitope showed similar binding affinities, this provides a basis for reversing immunogenicity upon ERT by: 1) treatment of patients with the epitope peptide to neutralize antibodies, or 2) removal of antibodies by apheresis, and thus significantly improving the response to ERT.


Subject(s)
Antibodies/immunology , Enzyme Replacement Therapy , Epitopes/immunology , Fabry Disease/drug therapy , alpha-Galactosidase/immunology , Fabry Disease/immunology , Humans , Mass Spectrometry , Models, Molecular , Molecular Structure , alpha-Galactosidase/chemistry , alpha-Galactosidase/metabolism
5.
BMC Microbiol ; 16(1): 280, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27884109

ABSTRACT

BACKGROUND: The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. RESULTS: The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD+ but not NADPH/NADP+ as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C3 - C5-aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg-1 protein), butanal to butanol (300 ± 24 mU mg-1), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg-1), however, the enzyme also oxidized 3-hydroxybutanal with NAD+ to acetoacetaldehyde (83 ± 18 mU mg-1). CONCLUSION: The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.


Subject(s)
Acetone/metabolism , Aldehydes/metabolism , Cloning, Organism , Deltaproteobacteria/enzymology , Deltaproteobacteria/genetics , Deltaproteobacteria/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Acetone/chemistry , Alcohol Dehydrogenase/metabolism , Aldehydes/chemistry , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Butanols/metabolism , Butylene Glycols/chemistry , Carbon Monoxide/metabolism , Coenzymes/metabolism , Deltaproteobacteria/growth & development , Enzyme Activation , Enzyme Assays , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial , Hydrogen-Ion Concentration , Metabolic Networks and Pathways/genetics , NAD/metabolism , NADP/metabolism , Propanols/metabolism , Proteomics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Temperature , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...