Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Physiol Biophys ; 35(4): 497-510, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27763330

ABSTRACT

In P-gp-positive cell variants obtained from L1210 cells either by selection with vincristine (L1210/R) or by transfection with the human gene encoding P-gp (L1210/T), we have previously described cross-resistance to tunicamycin (TNM), a protein N-glycosylation inhibitor. Here we studied whether this cross-resistance also underlies P-gp-positive variants of human acute myeloid leukemia cells (AML) derived from SKM-1 and MOLM-13 cells (SKM-1/VCR, SKM-1/LEN, MOLM-13/VCR) by selection with vincristine (VCR) and lenalidomide (LEN). While SKM-1/LEN cells were P-gp positive, no P-gp was detected in MOLM-13/LEN cells. P-gp-positive cells could be repeatedly passaged in medium containing TNM. In contrast, more than 90% of P-gp-negative cells were entering and progressing through cell death mechanisms after the third passage in medium containing TNM. Combined apoptosis/necrosis cell death was detected in L1210 cells after exposure to TNM. Passaging of P-gp-negative AML cells in medium containing TNM induced preferentially apoptosis. Damage to P-gp-negative cells induced with TNM was associated with arrest in the G1 phase of the cell cycle. P-gp-positive leukemia cells differed from P-gp-negative cells in the composition of plasma membrane glycoproteins, which we monitored with the aid of different lectins. The application of TNM to cells induced additional changes in membrane-linked glycosides.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Apoptosis/drug effects , Drug Resistance, Neoplasm , Leukemia/drug therapy , Tunicamycin/administration & dosage , Cell Line, Tumor , Dose-Response Relationship, Drug , Glycosylation/drug effects , Humans , Leukemia/pathology , Treatment Outcome
2.
Can J Physiol Pharmacol ; 93(9): 827-34, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26323039

ABSTRACT

Even though stress belongs to the most common lifestyle risk factors of cardiovascular diseases, there are only limited data on direct influence of stressors on the heart. The aim of the present study was to explore selected protein signaling pathways in response to repeated immobilization stress in the heart tissue. Effects of simultaneous treatment with atosiban, an oxytocin receptor antagonist, on stress-induced changes in the heart were also investigated. Male Wistar rats were exposed to repeated immobilization (2 h daily, lasting 2 weeks). The results showed increased phosphorylation of Akt kinase, enhanced levels of Bcl-2, and decreased levels of cleaved caspase-3 in the left ventricle in response to chronic stress independently of the treatment. Exposure to restraint led to the rise of HSP-90 and p53 in vehicle-treated rats only. Stress failed to modify MMP-2 activity and ultrastructure of the heart tissue. Treatment with the oxytocin/vasopressin receptor antagonist atosiban reversed stress-induced rise in HSP-90 and p53 proteins. In conclusion, our data demonstrate that repeated restraint stress induces Akt kinase activation and this is associated with elevation of anti-apoptotic proteins (Bcl-2) and down-regulation of pro-apoptotic proteins (cleaved caspase-3). These findings suggest that activation of pro-survival anti-apoptotic Akt kinase pathway plays an important role in molecular mechanisms underlying responses and adaptation of the rat heart to repeated stress exposure. The results further indicate a regulatory role of oxytocin/vasopressin in the control of stress-induced activation in HSP-90 and related proteins.


Subject(s)
Caspase 3/metabolism , HSP90 Heat-Shock Proteins/metabolism , Matrix Metalloproteinase 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Stress, Physiological , Vasotocin/analogs & derivatives , Animals , Heart/drug effects , Male , Myocardium/metabolism , Myocardium/ultrastructure , Rats , Restraint, Physical , Signal Transduction/drug effects , Vasotocin/pharmacology
3.
Toxicol In Vitro ; 26(3): 435-44, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22269388

ABSTRACT

Multidrug resistance (MDR) is a phenomenon in which cells become resistant to cytostatic drugs and other substances with diverse chemical structures and cytotoxicity mechanisms. The most often observed molecular mechanism for MDR includes high levels of P-glycoprotein (P-gp)--an ABCB1 member of the ABC drug transporter family. Overexpression of P-gp in neoplastic tissue is an obstacle to chemotherapeutic treatment. Herein, we were focused on differences in apoptosis induced by cisplatin (no substrate for P-gp) between P-gp-positive and P-gp-negative L1210 cells. P-gp-positive cells were obtained by either L1210 cell adaptation to vincristine (R) or L1210 cell transfection with the human gene for P-gp (T) and compared with parental L1210 cells (S). R and T cells were more resistant to CisPt than S cells. R and T cell resistance to CisPt-induced apoptosis could not be reversed by verapamil (a well-known P-gp inhibitor), which excludes P-gp transport activity as a cause of CisPt resistance. CisPt induced a more pronounced entry into apoptosis in S than R and T cells, which was measured using the annexin-V/propidium iodide apoptosis kit. CisPt induced more pronounced caspase-3 activation in S than R and T cells. CisPt did not induce changes in the P-gp protein level for R and T cells. While similar levels of Bax and Bcl-2 proteins were observed in P-gp-negative and P-gp-positive cells, CisPt induced a more significant decrease in Bcl-2 levels for S cells than P-gp-positive cells. Expression of p53 and its molecular chaperone Hsp90 were more pronounced in R and T than S cells. Moreover, CisPt enhanced the upregulation of p53 and Hsp90 in R and T cells to a higher degree than S cells. Apoptosis was shown to be the prevalent mode of cell death in S, R and T cells by the typical DNA fragmentation and cell ultrastructure changes. All of the above findings indicate that P-gp, independent of its drug efflux activity, induced changes in cell regulatory pathways that confer a partial loss of cisplatin sensitivity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Leukemia L1210/drug therapy , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Apoptosis/drug effects , Caspase 3/drug effects , Caspase 3/metabolism , DNA Fragmentation/drug effects , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins/genetics , Humans , Leukemia L1210/pathology , Mice , Tumor Suppressor Protein p53/genetics , Up-Regulation/genetics , Verapamil/pharmacology , Vincristine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...