Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nat Commun ; 15(1): 541, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225245

ABSTRACT

Efferocytic clearance of apoptotic cells in general, and T cells in particular, is required for tissue and immune homeostasis. Transmembrane mucins are extended glycoproteins highly expressed in the cell glycocalyx that function as a barrier to phagocytosis. Whether and how mucins may be regulated during cell death to facilitate efferocytic corpse clearance is not well understood. Here we show that normal and transformed human T cells express a subset of mucins which are rapidly and selectively removed from the cell surface during apoptosis. This process is mediated by the ADAM10 sheddase, the activity of which is associated with XKR8-catalyzed flipping of phosphatidylserine to the outer leaflet of the plasma membrane. Mucin clearance enhances uptake of apoptotic T cells by macrophages, confirming mucins as an enzymatically-modulatable barrier to efferocytosis. Together these findings demonstrate a glycocalyx regulatory pathway with implications for therapeutic intervention in the clearance of normal and transformed apoptotic T cells.


Subject(s)
Efferocytosis , Mucins , Humans , T-Lymphocytes/metabolism , Apoptosis , Phagocytosis , ADAM10 Protein/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Amyloid Precursor Protein Secretases
2.
NPJ Vaccines ; 8(1): 101, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443366

ABSTRACT

Chemical cross-linking is used to stabilize protein structures with additional benefits of pathogen and toxin inactivation for vaccine use, but its use has been restricted by the potential for local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for inducing a biological outcome such as the elicitation of antibodies to conformationally sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimide (EDC) to cross-link two soluble Env trimers, selected well-folded trimer species using antibody affinity, and transferred this process to good manufacturing practice (GMP) for experimental medicine use. Cross-linking enhanced trimer stability to biophysical and enzyme attack. Cryo-EM analysis revealed that cross-linking retained the overall structure with root-mean-square deviations (RMSDs) between unmodified and cross-linked Env trimers of 0.4-0.5 Å. Despite this negligible distortion of global trimer structure, we identified individual inter-subunit, intra-subunit, and intra-protomer cross-links. Antigenicity and immunogenicity of the trimers were selectively modified by cross-linking, with cross-linked ConS retaining bnAb binding more consistently than ConM. Thus, the EDC cross-linking process improves trimer stability whilst maintaining protein folding, and is readily transferred to GMP, consistent with the more general use of this approach in protein-based vaccine design.

3.
Mol Ther ; 30(12): 3639-3657, 2022 12 07.
Article in English | MEDLINE | ID: mdl-35949171

ABSTRACT

Adenovirus vector vaccines have been widely and successfully deployed in response to coronavirus disease 2019 (COVID-19). However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared with other technologies. Here, we describe a system enabling modular decoration of adenovirus capsid surfaces with antigens and demonstrate potent induction of humoral immunity against these displayed antigens. Ligand attachment via a covalent bond was achieved using a protein superglue, DogTag/DogCatcher (similar to SpyTag/SpyCatcher), in a rapid and spontaneous reaction requiring only co-incubation of ligand and vector components. DogTag was inserted into surface-exposed loops in the adenovirus hexon protein to allow attachment of DogCatcher-fused ligands on virus particles. Efficient coverage of the capsid surface was achieved using various ligands, with vector infectivity retained in each case. Capsid decoration shielded particles from vector neutralizing antibodies. In prime-boost regimens, adenovirus vectors decorated with the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike induced >10-fold higher SARS-CoV-2 neutralization titers compared with an undecorated vector encoding spike. Importantly, decorated vectors achieved equivalent or superior T cell immunogenicity against encoded antigens compared with undecorated vectors. We propose capsid decoration using protein superglues as a novel strategy to improve efficacy and boostability of adenovirus-based vaccines and therapeutics.


Subject(s)
Adenovirus Vaccines , COVID-19 , Humans , SARS-CoV-2 , Immunity, Humoral , Ligands , COVID-19/prevention & control
4.
NPJ Vaccines ; 7(1): 27, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35228534

ABSTRACT

Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.

5.
Nat Immunol ; 23(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34853448

ABSTRACT

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
HLA-B7 Antigen/immunology , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Amino Acid Sequence , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line, Transformed , Female , Gene Expression Profiling , Humans , Immunologic Memory/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
6.
Sci Adv ; 7(37): eabg7996, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516768

ABSTRACT

There is an urgent requirement for safe and effective vaccines to prevent COVID-19. A concern for the development of new viral vaccines is the potential to induce vaccine-enhanced disease (VED). This was reported in several preclinical studies with both SARS-CoV-1 and MERS vaccines but has not been reported with SARS-CoV-2 vaccines. We have used ferrets and rhesus macaques challenged with SARS-CoV-2 to assess the potential for VED in animals vaccinated with formaldehyde-inactivated SARS-CoV-2 (FIV) formulated with Alhydrogel, compared to a negative control vaccine. We showed no evidence of enhanced disease in ferrets or rhesus macaques given FIV except for mild transient enhanced disease seen 7 days after infection in ferrets. This increased lung pathology was observed at day 7 but was resolved by day 15. We also demonstrate that formaldehyde treatment of SARS-CoV-2 reduces exposure of the spike receptor binding domain providing a mechanistic explanation for suboptimal immunity.

7.
Sci Rep ; 11(1): 13638, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34211037

ABSTRACT

Human cells respond to infection by SARS-CoV-2, the virus that causes COVID-19, by producing cytokines including type I and III interferons (IFNs) and proinflammatory factors such as IL6 and TNF. IFNs can limit SARS-CoV-2 replication but cytokine imbalance contributes to severe COVID-19. We studied how cells detect SARS-CoV-2 infection. We report that the cytosolic RNA sensor MDA5 was required for type I and III IFN induction in the lung cancer cell line Calu-3 upon SARS-CoV-2 infection. Type I and III IFN induction further required MAVS and IRF3. In contrast, induction of IL6 and TNF was independent of the MDA5-MAVS-IRF3 axis in this setting. We further found that SARS-CoV-2 infection inhibited the ability of cells to respond to IFNs. In sum, we identified MDA5 as a cellular sensor for SARS-CoV-2 infection that induced type I and III IFNs.


Subject(s)
COVID-19/immunology , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1/immunology , Interferons/immunology , SARS-CoV-2/immunology , Cell Line , Humans , Immunity, Innate , RNA/immunology , Interferon Lambda
8.
EMBO Rep ; 22(8): e52447, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34142428

ABSTRACT

Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination.


Subject(s)
COVID-19 , Influenza Vaccines , Vaccines, Virus-Like Particle , Animals , Humans , Mice , Nucleotides, Cyclic , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Virus-Like Particle/genetics
9.
Wellcome Open Res ; 5: 181, 2020.
Article in English | MEDLINE | ID: mdl-33283055

ABSTRACT

Background: Laboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. Methods: We undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=462 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. Results: We identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected ≥28 days post symptom onset, 0/494 (0%, 95%CI 0-0.7%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. Conclusions: vRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19.

10.
PLoS Pathog ; 14(5): e1006986, 2018 05.
Article in English | MEDLINE | ID: mdl-29746590

ABSTRACT

Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine.


Subject(s)
HIV-1/chemistry , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibody Specificity , Antigen-Antibody Reactions/immunology , Cross-Linking Reagents , Cryoelectron Microscopy , HIV Antibodies/immunology , HIV Antigens/chemistry , HIV Antigens/immunology , HIV Antigens/ultrastructure , Host-Pathogen Interactions/immunology , Humans , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Conformation , Protein Stability , Protein Structure, Quaternary , Rabbits , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology , env Gene Products, Human Immunodeficiency Virus/ultrastructure
11.
World J Pediatr Congenit Heart Surg ; 8(4): 427-434, 2017 07.
Article in English | MEDLINE | ID: mdl-28696880

ABSTRACT

OBJECTIVE: To evaluate the performance of the Pediatric Risk of Mortality 3 (PRISM-3) score in critically ill children with heart disease. METHODS: Patients <18 years of age admitted with cardiac diagnoses (cardiac medical and cardiac surgical) to one of the participating pediatric intensive care units in the Virtual Pediatric Systems, LLC, database were included. Performance of PRISM-3 was evaluated with discrimination and calibration measures among both cardiac surgical and cardiac medical patients. RESULTS: The study population consisted of 87,993 patients, of which 49% were cardiac medical patients (n = 43,545) and 51% were cardiac surgical patients (n = 44,448). The ability of PRISM-3 to distinguish survivors from nonsurvivors was acceptable for the entire cohort (c-statistic 0.86). However, PRISM-3 did not perform as well when stratified by varied severity of illness categories. Pediatric Risk of Mortality 3 underpredicted mortality among patients with lower severity of illness categories (quintiles 1-4) whereas it overpredicted mortality among patients with greatest severity of illness category (fifth quintile). When stratified by Society of Thoracic Surgeons-European Association for Cardiothoracic Surgery (STS-EACTS) categories, PRISM-3 overpredicted mortality among the STS-EACTS mortality categories 1, 2, and 3 and underpredicted mortality among the STS-EACTS mortality categories 4 and 5. Pediatric Risk of Mortality 3 overpredicted mortality among centers with high cardiac surgery volume whereas it underpredicted mortality among centers with low cardiac surgery volume. CONCLUSION: Data from this large multicenter study do not support the use of PRISM-3 in cardiac surgical or cardiac medical patients. In this study, the ability of PRISM-3 to distinguish survivors from nonsurvivors was fair at best, and the accuracy with which it predicted death was poor.


Subject(s)
Critical Illness , Heart Diseases/mortality , Intensive Care Units, Pediatric/statistics & numerical data , Child , Child, Preschool , Databases, Factual , Female , Heart Diseases/diagnosis , Hospital Mortality/trends , Humans , Infant , Male , Retrospective Studies , Severity of Illness Index , Survival Rate/trends , United States/epidemiology
12.
Cell Rep ; 18(6): 1473-1483, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28178524

ABSTRACT

HIV-1 disseminates to diverse tissues and establishes long-lived viral reservoirs. These reservoirs include the CNS, in which macrophage-lineage cells, and as suggested by many studies, astrocytes, may be infected. Here, we have investigated astrocyte infection by HIV-1. We confirm that astrocytes trap and internalize HIV-1 particles for subsequent release but find no evidence that these particles infect the cell. Astrocyte infection was not observed by cell-free or cell-to-cell routes using diverse approaches, including luciferase and GFP reporter viruses, fixed and live-cell fusion assays, multispectral flow cytometry, and super-resolution imaging. By contrast, we observed intimate interactions between HIV-1-infected macrophages and astrocytes leading to signals that might be mistaken for astrocyte infection using less stringent approaches. These results have implications for HIV-1 infection of the CNS, viral reservoir formation, and antiretroviral therapy.


Subject(s)
Astrocytes/virology , HIV Infections/virology , HIV-1/pathogenicity , Macrophages/virology , Astrocytes/metabolism , Cell Fusion/methods , Central Nervous System/metabolism , Central Nervous System/virology , Green Fluorescent Proteins/metabolism , HIV Infections/metabolism , Humans , Luciferases/metabolism , Macrophages/metabolism
13.
J Virol ; 90(2): 813-28, 2016 01 15.
Article in English | MEDLINE | ID: mdl-26512083

ABSTRACT

UNLABELLED: Major neutralizing antibody immune evasion strategies of the HIV-1 envelope glycoprotein (Env) trimer include conformational and structural instability. Stabilized soluble trimers such as BG505 SOSIP.664 mimic the structure of virion-associated Env but nevertheless sample different conformational states. Here we demonstrate that treating BG505 SOSIP.664 trimers with glutaraldehyde or a heterobifunctional cross-linker introduces additional stability with relatively modest effects on antigenicity. Thus, most broadly neutralizing antibody (bNAb) epitopes were preserved after cross-linking, whereas the binding of most weakly or nonneutralizing antibodies (non-NAb) was reduced. Cross-linking stabilized all Env conformers present within a mixed population, and individual conformers could be isolated by bNAb affinity chromatography. Both positive selection of cross-linked conformers using the quaternary epitope-specific bNAbs PGT145, PGT151, and 3BC315 and negative selection with non-NAbs against the V3 region enriched for trimer populations with improved antigenicity for bNAbs. Similar results were obtained using the clade B B41 SOSIP.664 trimer. The cross-linking method may, therefore, be useful for countering the natural conformational heterogeneity of some HIV-1 Env proteins and, by extrapolation, also vaccine immunogens from other pathogens. IMPORTANCE: The development of a vaccine to induce protective antibodies against HIV-1 is of primary public health importance. Recent advances in immunogen design have provided soluble recombinant envelope glycoprotein trimers with near-native morphology and antigenicity. However, these trimers are conformationally flexible, potentially reducing B-cell recognition of neutralizing antibody epitopes. Here we show that chemical cross-linking increases trimer stability, reducing binding of nonneutralizing antibodies while largely maintaining neutralizing antibody binding. Cross-linking followed by positive or negative antibody affinity selection of individual stable conformational variants further improved the antigenic and morphological characteristics of the trimers. This approach may be generally applicable to HIV-1 Env and also to other conformationally flexible pathogen antigens.


Subject(s)
HIV Antigens/immunology , HIV Antigens/metabolism , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism , Antibodies, Neutralizing/immunology , Cross-Linking Reagents/metabolism , HIV Antibodies/immunology , Humans
14.
J Drug Deliv ; 2015: 686598, 2015.
Article in English | MEDLINE | ID: mdl-26664749

ABSTRACT

Background. The ability of safety technologies to decrease errors, harm, and risk to patients has yet to be demonstrated consistently. Objective. To compare discrepancies between medication and intravenous fluid (IVF) orders and bedside infusion pump settings within a pediatric intensive care unit (PICU) before and after implementation of an interface between computerized physician order entry (CPOE) and pharmacy systems. Methods. Within a 72-bed PICU, medication and IVF orders in the CPOE system and bedside infusion pump settings were collected. Rates of discrepancy were calculated and categorized by type. Results were compared to a study conducted prior to interface implementation. Expansion of PICU also occurred between study periods. Results. Of 455 observations, discrepancy rate decreased for IVF (p = 0.01) compared to previous study. Overall discrepancy rate for medications was unchanged; however, medications infusing without an order decreased (p < 0.01), and orders without corresponding infusion increased (p < 0.05). Conclusions. Following implementation of an interface between CPOE and pharmacy systems, fewer discrepancies between IVF orders and infusion pump settings were observed. Discrepancies for medications did not change, and some types of discrepancies increased. In addition to interface implementation, changes in healthcare delivery and workflow related to ICU expansion contributed to observed changes.

15.
Clin Vaccine Immunol ; 22(9): 1004-12, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26135973

ABSTRACT

The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines.


Subject(s)
Adaptive Immunity , Adjuvants, Immunologic , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Acrylic Resins , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Influenza Vaccines/administration & dosage , Lecithins/immunology , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Pathogen-Associated Molecular Pattern Molecules , Th1-Th2 Balance , Vaccination
16.
Cell Host Microbe ; 16(6): 711-21, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25467409

ABSTRACT

Macrophages contribute to HIV-1 pathogenesis by forming a viral reservoir and mediating neurological disorders. Cell-free HIV-1 infection of macrophages is inefficient, in part due to low plasma membrane expression of viral entry receptors. We find that macrophages selectively capture and engulf HIV-1-infected CD4+ T cells leading to efficient macrophage infection. Infected T cells, both healthy and dead or dying, were taken up through viral envelope glycoprotein-receptor-independent interactions, implying a mechanism distinct from conventional virological synapse formation. Macrophages infected by this cell-to-cell route were highly permissive for both CCR5-using macrophage-tropic and otherwise weakly macrophage-tropic transmitted/founder viruses but restrictive for nonmacrophage-tropic CXCR4-using virus. These results have implications for establishment of the macrophage reservoir and HIV-1 dissemination in vivo.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , Macrophages/virology , CD4-Positive T-Lymphocytes/metabolism , Cell Line , HIV Infections/metabolism , HIV-1/genetics , Humans , Macrophages/metabolism , Receptors, HIV/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Tropism
17.
World J Pediatr Congenit Heart Surg ; 5(1): 16-21, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24403350

ABSTRACT

BACKGROUND: The Risk-Adjusted Classification for Congenital Heart Surgery (RACHS-1) method and Aristotle Basic Complexity (ABC) scores correlate with mortality. However, low mortality rates in congenital heart disease (CHD) make use of mortality as the primary outcome measure insufficient. Demonstrating correlation between risk-adjustment tools and the Pediatric Logistic Organ Dysfunction (PELOD) score might allow for risk-adjusted comparison of an outcome measure other than mortality. METHODS: Data were obtained from the Virtual PICU Systems database. Patients with postoperative CHD between 2009 and 2010 were included. Correlation between RACHS-1 category and PELOD score and between ABC level and PELOD score was examined using Spearman rank correlation. Consistency of PELOD scores across institutions for given levels of case complexity was examined using Kruskal-Wallis nonparametric analysis of variance. RESULTS: A total of 1,981 patient visits among 12 institutions met inclusion criteria. Positive correlations between PELOD score and RACHS-1 category (r s = .353, P < .0001) as well as between PELOD score and ABC level (r s = .328, P < .0001) were demonstrated. Variability in PELOD scores across individual centers for given levels of case complexity was observed (P < .04). CONCLUSIONS: Risk-Adjusted Classification for Congenital Heart Surgery categories and ABC levels correlate with postoperative organ dysfunction as measured by PELOD. However, the correlation was weak, potentially due to limitations of the PELOD score itself. Identification of a more accurate metric of morbidity for the congenital heart disease population is needed.


Subject(s)
Cardiac Surgical Procedures , Heart Defects, Congenital/surgery , Hospital Mortality , Organ Dysfunction Scores , Cardiac Surgical Procedures/methods , Cardiac Surgical Procedures/mortality , Child , Data Collection , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/mortality , Humans , Length of Stay , Predictive Value of Tests , Risk Assessment , Sensitivity and Specificity , Severity of Illness Index , United States
18.
J Virol ; 88(4): 2025-34, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24307588

ABSTRACT

Macrophage infection is considered to play an important role in HIV-1 pathogenesis and persistence. Using a primary cell-based coculture model, we show that monocyte-derived macrophages (MDM) efficiently transmit a high-multiplicity HIV-1 infection to autologous CD4(+) T cells through a viral envelope glycoprotein (Env) receptor- and actin-dependent virological synapse (VS), facilitated by interactions between ICAM-1 and LFA-1. Virological synapse (VS)-mediated transmission by MDM results in high levels of T cell HIV-1 integration and is 1 to 2 orders of magnitude more efficient than cell-free infection. This mode of cell-to-cell transmission is broadly susceptible to the activity of CD4 binding site (CD4bs) and glycan or glycopeptide epitope-specific broadly neutralizing monoclonal antibodies (bNMAbs) but shows resistance to bNMAbs targeting the Env gp41 subunit membrane-proximal external region (MPER). These data define for the first time the structure and function of the macrophage-to-T cell VS and have important implications for bNMAb activity in HIV-1 prophylaxis and therapy. IMPORTANCE The ability of HIV-1 to move directly between contacting immune cells allows efficient viral dissemination with the potential to evade antibody attack. Here, we show that HIV-1 spreads from infected macrophages to T cells via a structure called a virological synapse that maintains extended contact between the two cell types, allowing transfer of multiple infectious events to the T cell. This process allows the virus to avoid neutralization by a class of antibody targeting the gp41 subunit of the envelope glycoproteins. These results have implications for viral spread in vivo and the specificities of neutralizing antibody elicited by antibody-based vaccines.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/immunology , HIV Infections/transmission , Immune Evasion/immunology , Immunological Synapses/virology , Macrophages/immunology , Analysis of Variance , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/virology , DNA Primers/genetics , HIV Envelope Protein gp41/immunology , HIV Infections/immunology , Intercellular Adhesion Molecule-1/metabolism , Luciferases , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophages/virology , Microscopy, Confocal , Neutralization Tests , Polymerase Chain Reaction , Time-Lapse Imaging
19.
AIDS ; 27(14): 2201-6, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-24005480

ABSTRACT

OBJECTIVE: Few studies have examined the efficacy of antiretroviral therapy (ART) in the context of cell-to-cell transmission. We aimed to determine whether the activity of ART is limited by the mode of HIV-1 spread between cells and the type of immune cell implicated in transmission, or is independent of these variables. DESIGN: ART activity was evaluated in primary cells using in-vitro cell-free and cell to-cell HIV-1 infection systems. METHODS: HIV-1 cell-free or cell-to-cell transmission between infected monocyte-derived macrophages (MDMs) and autologous target CD4+ T cells was measured in the presence or absence of reverse transcriptase and integrase inhibitors. Viral infection was evaluated using luciferase-reporter infectious molecular HIV-1 clones carrying macrophage-tropic envelope glycoproteins (Envs). Cell-free HIV-1 was titrated to yield different multiplicities of CD4+ T-cell infection. RESULTS: Whereas cell-free infection of CD4+ T cells was substantially reduced by all inhibitors, cell-to-cell spread from macrophages to CD4+ T cells was largely resistant to inhibition. However, when multiplicity of infection was controlled for, we observed no difference in antiretroviral inhibition of cell-to-cell or cell-free infection. CONCLUSION: Cell-to-cell spread of HIV-1 reduces the probability of antiretroviral inhibition, but it is the number of infectious viruses transferred between cells rather than the specific mode of viral spread or transmitting cell type that governs antiretroviral activity. High multiplicity infection in vivo is more likely to occur by cell-to-cell transmission, and these data will inform use of ART against viral reservoirs.


Subject(s)
Anti-Retroviral Agents/pharmacology , CD4-Positive T-Lymphocytes/virology , HIV-1/drug effects , Macrophages/virology , CD4-Positive T-Lymphocytes/drug effects , Cells, Cultured , Coculture Techniques , HIV-1/immunology , Humans , Macrophages/drug effects
20.
Ann Thorac Surg ; 96(3): 885-90, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23916808

ABSTRACT

BACKGROUND: Presentation in shock and preoperative infection remain risk factors for neonatal cardiac surgery. This report describes bilateral pulmonary artery banding (bPAB) in ductal-dependent lesions with systemic outflow obstruction as rescue intervention before surgery with cardiopulmonary bypass in these high-risk neonates. METHODS: A retrospective chart review was conducted for 10 patients who underwent bPAB before conventional surgery with cardiopulmonary bypass. Patient characteristics including birth weight, gestational age, cardiac and noncardiac diagnoses, preoperative and postoperative markers of organ function, and outcome measures were examined. RESULTS: The majority of patients (8 of 10) were considered high-risk owing to multiorgan dysfunction syndrome. The median age at bPAB was 12 days (range, 5 to 26 days), and the median interval between bPAB and second surgery was 10.5 days (range, 5 to 79 days). Organ function improved after admission and continued to improve after bPAB in 9 of 10 patients. No patient experienced new complications between bPAB and subsequent operation. Of 8 patients who had stage I palliation, 5 have undergone or are awaiting completion Fontan, 1 underwent Kawashima procedure, 1 underwent orthotopic heart transplant, and 1 with hypoplastic left heart syndrome and intact atrial septum died at 44 days old. Both patients who underwent biventricular repair are alive and well. Median follow-up for survivors was 2.9 years (range, 0.25 to 6.25 years). CONCLUSIONS: Bilateral pulmonary artery banding is safe in ductal-dependent lesions with systemic outflow obstruction. High-risk patients with preoperative organ dysfunction or infection can recover within a short period and become lower risk candidates for complex congenital heart surgery using cardiopulmonary bypass.


Subject(s)
Heart Defects, Congenital/surgery , Palliative Care/methods , Pulmonary Artery/surgery , Ventricular Outflow Obstruction/surgery , Alprostadil/therapeutic use , Cardiopulmonary Bypass/methods , Cardiopulmonary Bypass/mortality , Cohort Studies , Female , Follow-Up Studies , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/mortality , Humans , Infant, Newborn , Ligation/methods , Male , Preoperative Care/methods , Retrospective Studies , Risk Assessment , Severity of Illness Index , Survival Rate , Treatment Outcome , Vascular Surgical Procedures/methods , Ventricular Outflow Obstruction/diagnosis , Ventricular Outflow Obstruction/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...