Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11650, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38773187

ABSTRACT

Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.


Subject(s)
Evolution, Molecular , Mammals , Neoplasms , Phylogeny , Animals , Mammals/genetics , Neoplasms/genetics , Humans , Selection, Genetic , Oncogenes/genetics , Genes, Tumor Suppressor , Genetic Predisposition to Disease
2.
Proc Biol Sci ; 285(1875)2018 03 28.
Article in English | MEDLINE | ID: mdl-29563261

ABSTRACT

Genetic diversity is essential for adaptive capacities, providing organisms with the potential of successfully responding to intrinsic and extrinsic challenges. Although a clear reciprocal link between genetic diversity and resistance to parasites and pathogens has been established across taxa, the impact of loss of genetic diversity by inbreeding on the emergence and progression of non-communicable diseases, such as cancer, has been overlooked. Here we provide an overview of such associations and show that low genetic diversity and inbreeding associate with an increased risk of cancer in both humans and animals. Cancer being a multifaceted disease, loss of genetic diversity can directly (via accumulation of oncogenic homozygous mutations) and indirectly (via increased susceptibility to oncogenic pathogens) impact abnormal cell emergence and escape of immune surveillance. The observed link between reduced genetic diversity and cancer in wildlife may further imperil the long-term survival of numerous endangered species, highlighting the need to consider the impact of cancer in conservation biology. Finally, the somewhat incongruent data originating from human studies suggest that the association between genetic diversity and cancer development is multifactorial and may be tumour specific. Further studies are therefore crucial in order to elucidate the underpinnings of the interactions between genetic diversity, inbreeding and cancer.


Subject(s)
Genetic Variation , Inbreeding , Neoplasms , Animals , Animals, Domestic , Animals, Wild , Genetic Predisposition to Disease , Humans , Mutation , Neoplasms/epidemiology , Neoplasms/genetics , Neoplasms/veterinary , Population Density , Risk Factors
3.
Sci Rep ; 8(1): 4175, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29520077

ABSTRACT

Devil Facial Tumour Disease (DFTD), a highly contagious cancer, has decimated Tasmanian devil (Sarcophilus harrisii) numbers in the wild. To ensure its long-term survival, a captive breeding program was implemented but has not been as successful as envisaged at its launch in 2005. We therefore investigated the reproductive success of 65 captive devil pair combinations, of which 35 produced offspring (successful pairs) whereas the remaining 30 pairs, despite being observed mating, produced no offspring (unsuccessful pairs). The devils were screened at six MHC Class I-linked microsatellite loci. Our analyses revealed that younger females had a higher probability of being successful than older females. In the successful pairs we also observed a higher difference in total number of heterozygous loci, i.e. when one devil had a high total number of heterozygous loci, its partner had low numbers. Our results therefore suggest that devil reproductive success is subject to disruptive MHC selection, which to our knowledge has never been recorded in any vertebrate. In order to enhance the success of the captive breeding program the results from the present study show the importance of using young (2-year old) females as well as subjecting the devils to MHC genotyping.


Subject(s)
Animal Diseases , Endangered Species , Genes, MHC Class I/immunology , Marsupialia , Microsatellite Repeats/immunology , Neoplasms , Aging/genetics , Aging/immunology , Animal Diseases/genetics , Animal Diseases/immunology , Animals , Australia , Female , Marsupialia/genetics , Marsupialia/immunology , Neoplasms/genetics , Neoplasms/immunology
4.
Bioessays ; 40(3)2018 03.
Article in English | MEDLINE | ID: mdl-29446482

ABSTRACT

Similar to parasites, malignant cells exploit the host for energy, resources and protection, thereby impairing host health and fitness. Although cancer is widespread in the animal kingdom, its impact on life history traits and strategies have rarely been documented. Devil facial tumour disease (DFTD), a transmissible cancer, afflicting Tasmanian devils (Sarcophilus harrisii), provides an ideal model system to monitor the impact of cancer on host life-history, and to elucidate the evolutionary arms-race between malignant cells and their hosts. Here we provide an overview of parasite-induced host life history (LH) adaptations, then both phenotypic plasticity of LH responses and changes in allele frequencies that affect LH traits of Tasmanian devils in response to DFTD are discussed. We conclude that akin to parasites, cancer can directly and indirectly affect devil LH traits and trigger host evolutionary responses. Consequently, it is important to consider oncogenic processes as a selective force in wildlife.


Subject(s)
Adaptation, Physiological/genetics , Carcinogenesis/genetics , Life History Traits , Marsupialia/genetics , Neoplasms/genetics , Quantitative Trait, Heritable , Alleles , Animals , Australia , Carcinogenesis/metabolism , Carcinogenesis/pathology , Face/pathology , Gene Frequency , Marsupialia/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...