Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
1.
JAMA Netw Open ; 7(5): e2412291, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38805228

ABSTRACT

Importance: Neurodevelopmental outcomes for children with congenital heart defects (CHD) have improved minimally over the past 20 years. Objectives: To assess the feasibility and tolerability of maternal progesterone therapy as well as the magnitude of the effect on neurodevelopment for fetuses with CHD. Design, Setting, and Participants: This double-blinded individually randomized parallel-group clinical trial of vaginal natural progesterone therapy vs placebo in participants carrying fetuses with CHD was conducted between July 2014 and November 2021 at a quaternary care children's hospital. Participants included maternal-fetal dyads where the fetus had CHD identified before 28 weeks' gestational age and was likely to need surgery with cardiopulmonary bypass in the neonatal period. Exclusion criteria included a major genetic or extracardiac anomaly other than 22q11 deletion syndrome and known contraindication to progesterone. Statistical analysis was performed June 2022 to April 2024. Intervention: Participants were 1:1 block-randomized to vaginal progesterone or placebo by diagnosis: hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and other CHD diagnoses. Treatment was administered twice daily between 28 and up to 39 weeks' gestational age. Main Outcomes and Measures: The primary outcome was the motor score of the Bayley Scales of Infant and Toddler Development-III; secondary outcomes included language and cognitive scales. Exploratory prespecified subgroups included cardiac diagnosis, fetal sex, genetic profile, and maternal fetal environment. Results: The 102 enrolled fetuses primarily had HLHS (n = 52 [50.9%]) and TGA (n = 38 [37.3%]), were more frequently male (n = 67 [65.7%]), and without genetic anomalies (n = 61 [59.8%]). The mean motor score differed by 2.5 units (90% CI, -1.9 to 6.9 units; P = .34) for progesterone compared with placebo, a value not statistically different from 0. Exploratory subgroup analyses suggested treatment heterogeneity for the motor score for cardiac diagnosis (P for interaction = .03) and fetal sex (P for interaction = .04), but not genetic profile (P for interaction = .16) or maternal-fetal environment (P for interaction = .70). Conclusions and Relevance: In this randomized clinical trial of maternal progesterone therapy, the overall effect was not statistically different from 0. Subgroup analyses suggest heterogeneity of the response to progesterone among CHD diagnosis and fetal sex. Trial Registration: ClinicalTrials.gov Identifier: NCT02133573.


Subject(s)
Heart Defects, Congenital , Progesterone , Humans , Progesterone/therapeutic use , Female , Heart Defects, Congenital/drug therapy , Heart Defects, Congenital/complications , Male , Pregnancy , Double-Blind Method , Infant , Adult , Infant, Newborn , Child Development/drug effects , Progestins/therapeutic use , Neurodevelopmental Disorders
2.
IDCases ; 36: e01979, 2024.
Article in English | MEDLINE | ID: mdl-38765800

ABSTRACT

71-year-old male with history of obstructive sleep apnea presented with persistent drainage from the surgical incision site over the recently implanted hypoglossal nerve stimulator. Wound cultures from device pocket identified the pathogen as Turicella otitidis. Clinical course included treatment with broad-spectrum intravenous antibiotics and device explantation. This case is the first known T. otitidis device associated infection.

3.
RNA ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575347

ABSTRACT

Forkhead box P3 (FOXP3) is the master fate-determining transcription factor in regulatory T (Treg) cells and is essential for their development, function and homeostasis. Mutations in FOXP3 cause immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, and aberrant expression of FOXP3 has been implicated in other diseases such as multiple sclerosis and cancer. We previously demonstrated that pre-mRNA splicing of FOXP3 RNAs is highly sen-sitive to levels of DExD-box polypeptide 39B (DDX39B) and here we investigate the mechanism of this sensitivity. FOXP3 introns have cytidine (C)-rich/uridine (U)-poor polypyrimidine (py) tracts that are responsible for their inefficient splicing and confer sensitivity to DDX39B. We show that there is a deficiency in the assembly of commitment complexes (CCs) on FOXP3 introns, which is consistent with the lower affinity of U2AF2 for C-rich/U-poor py tracts. Our data indicate an even stronger effect on the conversion of CCs to pre-spliceosomes. We propose that this is due to an altered conformation that U2AF2 adopts when it binds to C-rich/U-poor py tracts and that this conformation has a lower affinity for DDX39B. As a consequence, CCs assembled on FOXP3 introns are defective in recruiting DDX39B and this leads to inefficient assembly of pre-spliceosome complexes.

4.
J Clin Invest ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662435

ABSTRACT

Cancer cells exhibit heightened secretory states that drive tumor progression. Here, we identify a chromosome 3q amplicon that serves as a platform for secretory regulation in cancer. The 3q amplicon encodes multiple Golgi-resident proteins, including the scaffold Golgi integral membrane protein 4 (GOLIM4) and the ion channel ATPase Secretory Pathway Ca2+ Transporting 1 (ATP2C1). We show that GOLIM4 recruits ATP2C1 and Golgi phosphoprotein 3 (GOLPH3) to coordinate calcium-dependent cargo loading and Golgi membrane bending and vesicle scission. GOLIM4 depletion disrupts the protein complex, resulting in a secretory blockade that inhibits the progression of 3q-amplified malignancies. In addition to its role as a scaffold, GOLIM4 maintains intracellular manganese (Mn) homeostasis by binding excess Mn in the Golgi lumen, which initiates the routing of Mn-bound GOLIM4 to lysosomes for degradation. We show that Mn treatment inhibits the progression of multiple types of 3q-amplified malignancies by degrading GOLIM4, resulting in a secretory blockade that interrupts pro-survival autocrine loops and attenuates pro-metastatic processes in the tumor microenvironment. Potentially underlying the selective activity of Mn against 3q-amplified malignancies, ATP2C1 co-amplification increases Mn influx into the Golgi lumen, resulting in a more rapid degradation of GOLIM4. These findings show that functional cooperativity between co-amplified genes underlies heightened secretion and a targetable secretory addiction in 3q-amplified malignancies.

5.
Diabetes Care ; 47(6): 1048-1055, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38621411

ABSTRACT

OBJECTIVE: Mixed-meal tolerance test-stimulated area under the curve (AUC) C-peptide at 12-24 months represents the primary end point for nearly all intervention trials seeking to preserve ß-cell function in recent-onset type 1 diabetes. We hypothesized that participant benefit might be detected earlier and predict outcomes at 12 months posttherapy. Such findings would support shorter trials to establish initial efficacy. RESEARCH DESIGN AND METHODS: We examined data from six Type 1 Diabetes TrialNet immunotherapy randomized controlled trials in a post hoc analysis and included additional stimulated metabolic indices beyond C-peptide AUC. We partitioned the analysis into successful and unsuccessful trials and analyzed the data both in the aggregate as well as individually for each trial. RESULTS: Among trials meeting their primary end point, we identified a treatment effect at 3 and 6 months when using C-peptide AUC (P = 0.030 and P < 0.001, respectively) as a dynamic measure (i.e., change from baseline). Importantly, no such difference was seen in the unsuccessful trials. The use of C-peptide AUC as a 6-month dynamic measure not only detected treatment efficacy but also suggested long-term C-peptide preservation (R2 for 12-month C-peptide AUC adjusted for age and baseline value was 0.80, P < 0.001), and this finding supported the concept of smaller trial sizes down to 54 participants. CONCLUSIONS: Early dynamic measures can identify a treatment effect among successful immune therapies in type 1 diabetes trials with good long-term prediction and practical sample size over a 6-month period. While external validation of these findings is required, strong rationale and data exist in support of shortening early-phase clinical trials.


Subject(s)
C-Peptide , Diabetes Mellitus, Type 1 , Immunotherapy , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Humans , C-Peptide/blood , C-Peptide/metabolism , Immunotherapy/methods , Female , Male , Adolescent , Treatment Outcome , Randomized Controlled Trials as Topic , Child , Adult , Area Under Curve
6.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38531364

ABSTRACT

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Subject(s)
Brucella , Brucellosis , Animals , Mice , Brucella/physiology , Proteomics , Brucellosis/metabolism , Endoplasmic Reticulum/metabolism
7.
J Am Geriatr Soc ; 72(4): 1004-1010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38495008

ABSTRACT

In response to some of the challenges that have been articlulated about the future of Geriatrics, we describe a more positive view and value proposition for the field. Health professionals with specific training in Geriatrics are a natural fit for a variety of roles in value-based care (VBC) programs and health systems. These roles include serving as educators for primary care health professionals and specialists in person-centered care of older adults, serving as consultants on geriatric conditions and syndromes in a co-management model of care, becoming effective leaders in VBC programs and health systems, and conducting quality improvement initiatives to build on the evidence-base for the management of common conditions in the older population. We further recommend that VBC programs and systems support Centers of Excellence or Institutes to implement these strategies within and Age-Friendly, learning system approach.


Subject(s)
Geriatrics , Humans , Aged , Geriatrics/education , Health Personnel , Quality Improvement
8.
Nat Commun ; 15(1): 756, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38272938

ABSTRACT

A contractile sheath and rigid tube assembly is a widespread apparatus used by bacteriophages, tailocins, and the bacterial type VI secretion system to penetrate cell membranes. In this mechanism, contraction of an external sheath powers the motion of an inner tube through the membrane. The structure, energetics, and mechanism of the machinery imply rigidity and straightness. The contractile tail of Agrobacterium tumefaciens bacteriophage Milano is flexible and bent to varying degrees, which sets it apart from other contractile tail-like systems. Here, we report structures of the Milano tail including the sheath-tube complex, baseplate, and putative receptor-binding proteins. The flexible-to-rigid transformation of the Milano tail upon contraction can be explained by unique electrostatic properties of the tail tube and sheath. All components of the Milano tail, including sheath subunits, are crosslinked by disulfides, some of which must be reduced for contraction to occur. The putative receptor-binding complex of Milano contains a tailspike, a tail fiber, and at least two small proteins that form a garland around the distal ends of the tailspikes and tail fibers. Despite being flagellotropic, Milano lacks thread-like tail filaments that can wrap around the flagellum, and is thus likely to employ a different binding mechanism.


Subject(s)
Bacteriophages , Type VI Secretion Systems , Bacteriophages/genetics , Agrobacterium tumefaciens/genetics , Type VI Secretion Systems/metabolism , Cell Membrane/metabolism
9.
Birth Defects Res ; 116(1): e2269, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37936552

ABSTRACT

BACKGROUND: There is limited knowledge regarding the impact of perioperative critical care on frequency of neurological imaging findings following esophageal atresia (EA) repair. METHODS: This is a retrospective study of infants (n = 70) following EA repair at a single institution (2009-2020). Sex, gestational age at birth, type of surgical repair, underlying disease severity, and frequency of neurologic imaging findings were obtained. We quantified the length of postoperative pain/sedation treatment and anesthesia exposure in the first year of life. Data were presented as numerical sums and percentages, while associations were measured using Spearman's Rho. RESULTS: Vertebral/spinal cord imaging was performed in all infants revealing abnormalities in 44% (31/70). Cranial/brain imaging findings were identified in 67% (22/33) of infants in the context of clinically indicated imaging (47%; 33/70). Long-gap EA patients (n = 16) received 10 times longer postoperative pain/sedation treatment and twice the anesthesia exposure compared with short-gap EA patients (n = 54). The frequency of neurologic imaging findings did not correlate with underlying disease severity scores, length of pain/sedation treatment, or cumulative anesthesia exposure. Lack of associations between clinical measures and imaging findings should be interpreted with caution given possible underestimation of cranial/brain findings. CONCLUSIONS: We propose that all infants with EA undergo brain imaging in addition to routine spinal imaging given the high burden of abnormal brain/cranial findings in our cohort. Quantification of pain/sedation and anesthesia exposure in long-gap EA patients could be used as indirect markers in future studies assessing the risk of neurological sequelae as evidenced by early abnormalities on brain imaging.


Subject(s)
Allostasis , Anesthesia , Esophageal Atresia , Infant , Infant, Newborn , Humans , Retrospective Studies , Anesthesia/adverse effects , Pain, Postoperative/complications
10.
Diabetes Care ; 47(3): 393-400, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38151474

ABSTRACT

OBJECTIVE: This multicenter prospective cohort study compared pancreas volume as assessed by MRI, metabolic scores derived from oral glucose tolerance testing (OGTT), and a combination of pancreas volume and metabolic scores for predicting progression to stage 3 type 1 diabetes (T1D) in individuals with multiple diabetes-related autoantibodies. RESEARCH DESIGN AND METHODS: Pancreas MRI was performed in 65 multiple autoantibody-positive participants enrolled in the Type 1 Diabetes TrialNet Pathway to Prevention study. Prediction of progression to stage 3 T1D was assessed using pancreas volume index (PVI), OGTT-derived Index60 score and Diabetes Prevention Trial-Type 1 Risk Score (DPTRS), and a combination of PVI and DPTRS. RESULTS: PVI, Index60, and DPTRS were all significantly different at study entry in 11 individuals who subsequently experienced progression to stage 3 T1D compared with 54 participants who did not experience progression (P < 0.005). PVI did not correlate with metabolic testing across individual study participants. PVI declined longitudinally in the 11 individuals diagnosed with stage 3 T1D, whereas Index60 and DPTRS increased. The area under the receiver operating characteristic curve for predicting progression to stage 3 from measurements at study entry was 0.76 for PVI, 0.79 for Index60, 0.79 for DPTRS, and 0.91 for PVI plus DPTRS. CONCLUSIONS: These findings suggest that measures of pancreas volume and metabolism reflect distinct components of risk for developing stage 3 type 1 diabetes and that a combination of these measures may provide superior prediction than either alone.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/diagnosis , Prospective Studies , Pancreas/diagnostic imaging , Pancreas/metabolism , Risk Factors , Autoantibodies , Magnetic Resonance Imaging
12.
J Nutr ; 153(12): 3397-3405, 2023 12.
Article in English | MEDLINE | ID: mdl-37898335

ABSTRACT

BACKGROUND: Regulation of mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in aging and nutrition. For example, caloric restriction reduces mTORC1 signaling and extends lifespan, whereas nutrient abundance and obesity increase mTORC1 signaling and reduce lifespan. Skeletal muscle-specific knockout (KO) of DEP domain-containing 5 protein (DEPDC5) results in constitutively active mTORC1 signaling, muscle hypertrophy and an increase in mitochondrial respiratory capacity. The metabolic profile of skeletal muscle, in the setting of hyperactive mTORC1 signaling, is not well known. OBJECTIVES: To determine the metabolomic and lipidomic signature in skeletal muscle from female and male wild-type (WT) and DEPDC5 KO mice. METHODS: Tibialis anterior (TA) muscles from WT and transgenic (conditional skeletal muscle-specific DEPDC5 KO) were obtained from female and male adult mice. Polar metabolites and lipids were extracted using a Bligh-Dyer extraction from 5 samples per group and identified and quantified by LC-MS/MS. Resulting analyte peak areas were analyzed with t-test, analysis of variance, and Volcano plots for group comparisons (e.g., WT compared with KO) and multivariate statistical analysis for genotype and sex comparisons. RESULTS: A total of 162 polar metabolites (organic acids, amino acids, and amines and acyl carnitines) and 1141 lipid metabolites were detected in TA samples by LC-MS/MS. Few polar metabolites showed significant differences in KO muscles compared with WT within the same sex group. P-aminobenzoic acid, ß-alanine, and dopamine were significantly higher in KO male muscle whereas erythrose-4-phosphate and oxoglutaric acid were significantly reduced in KO females. The lipidomic profile of the KO groups revealed an increase of muscle phospholipids and reduced triacylglycerol and diacylglycerol compared with the WT groups. CONCLUSIONS: Sex differences were detected in polar metabolome and lipids were dependent on genotype. The metabolomic profile of mice with hyperactive skeletal muscle mTORC1 is consistent with an upregulation of mitochondrial function and amino acid utilization for protein synthesis.


Subject(s)
Lipidomics , Tandem Mass Spectrometry , Female , Male , Mice , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Chromatography, Liquid , Muscle, Skeletal/metabolism , Mice, Knockout , Lipids
13.
Sci Data ; 10(1): 635, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726365

ABSTRACT

Metabolic stable isotope labeling with heavy water followed by liquid chromatography coupled with mass spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies. Several algorithms and tools have been developed to determine the turnover rates of peptides and proteins from time-course stable isotope labeling experiments. The availability of benchmark mass spectrometry data is crucial to compare and validate the effectiveness of newly developed techniques and algorithms. In this work, we report a heavy water-labeled LC-MS dataset from the murine liver for protein turnover rate analysis. The dataset contains eighteen mass spectral data with their corresponding database search results from nine different labeling durations and quantification outputs from d2ome+ software. The dataset also contains eight mass spectral data from two-dimensional fractionation experiments on unlabeled samples.


Subject(s)
Liver , Proteome , Animals , Mice , Chromatography, Liquid , Deuterium Oxide , Tandem Mass Spectrometry
14.
Proc Natl Acad Sci U S A ; 120(28): e2220276120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37406091

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) underlies immunosuppression, drug resistance, and metastasis in epithelial malignancies. However, the way in which EMT orchestrates disparate biological processes remains unclear. Here, we identify an EMT-activated vesicular trafficking network that coordinates promigratory focal adhesion dynamics with an immunosuppressive secretory program in lung adenocarcinoma (LUAD). The EMT-activating transcription factor ZEB1 drives exocytotic vesicular trafficking by relieving Rab6A, Rab8A, and guanine nucleotide exchange factors from miR-148a-dependent silencing, thereby facilitating MMP14-dependent focal adhesion turnover in LUAD cells and autotaxin-mediated CD8+ T cell exhaustion, indicating that cell-intrinsic and extrinsic processes are linked through a microRNA that coordinates vesicular trafficking networks. Blockade of ZEB1-dependent secretion reactivates antitumor immunity and negates resistance to PD-L1 immune checkpoint blockade, an important clinical problem in LUAD. Thus, EMT activates exocytotic Rabs to drive a secretory program that promotes invasion and immunosuppression in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Cell Line, Tumor , Zinc Finger E-box-Binding Homeobox 1/metabolism , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics , MicroRNAs/genetics , Immunosuppression Therapy , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
15.
bioRxiv ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37131784

ABSTRACT

SARS-CoV-2 Omicron variants emerged in 2022 with >30 novel amino acid mutations in the spike protein alone. While most studies focus on receptor binding domain changes, mutations in the C-terminus of S1 (CTS1), adjacent to the furin cleavage site, have largely been ignored. In this study, we examined three Omicron mutations in CTS1: H655Y, N679K, and P681H. Generating a SARS-CoV-2 triple mutant (YKH), we found that the mutant increased spike processing, consistent with prior reports for H655Y and P681H individually. Next, we generated a single N679K mutant, finding reduced viral replication in vitro and less disease in vivo. Mechanistically, the N679K mutant had reduced spike protein in purified virions compared to wild-type; spike protein decreases were further exacerbated in infected cell lysates. Importantly, exogenous spike expression also revealed that N679K reduced overall spike protein yield independent of infection. Although a loss-of-function mutation, transmission competition demonstrated that N679K had a replication advantage in the upper airway over wild-type SARS-CoV-2 in hamsters, potentially impacting transmissibility. Together, the data show that N679K reduces overall spike protein levels during Omicron infection, which has important implications for infection, immunity, and transmission.

16.
Commun Chem ; 6(1): 72, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069333

ABSTRACT

Heavy water metabolic labeling followed by liquid chromatography coupled with mass spectrometry is a powerful high throughput technique for measuring the turnover rates of individual proteins in vivo. The turnover rate is obtained from the exponential decay modeling of the depletion of the monoisotopic relative isotope abundance. We provide theoretical formulas for the time course dynamics of six mass isotopomers and use the formulas to introduce a method that utilizes partial isotope profiles, only two mass isotopomers, to compute protein turnover rate. The use of partial isotope profiles alleviates the interferences from co-eluting contaminants in complex proteome mixtures and improves the accuracy of the estimation of label enrichment. In five different datasets, the technique consistently doubles the number of peptides with high goodness-of-fit characteristics of the turnover rate model. We also introduce a software tool, d2ome+, which automates the protein turnover estimation from partial isotope profiles.

17.
J Biol Chem ; 299(4): 104586, 2023 04.
Article in English | MEDLINE | ID: mdl-36889589

ABSTRACT

MDGAs (MAM domain-containing glycosylphosphatidylinositol anchors) are synaptic cell surface molecules that regulate the formation of trans-synaptic bridges between neurexins (NRXNs) and neuroligins (NLGNs), which promote synaptic development. Mutations in MDGAs are implicated in various neuropsychiatric diseases. MDGAs bind NLGNs in cis on the postsynaptic membrane and physically block NLGNs from binding to NRXNs. In crystal structures, the six immunoglobulin (Ig) and single fibronectin III domains of MDGA1 reveal a striking compact, triangular shape, both alone and in complex with NLGNs. Whether this unusual domain arrangement is required for biological function or other arrangements occur with different functional outcomes is unknown. Here, we show that WT MDGA1 can adopt both compact and extended 3D conformations that bind NLGN2. Designer mutants targeting strategic molecular elbows in MDGA1 alter the distribution of 3D conformations while leaving the binding affinity between soluble ectodomains of MDGA1 and NLGN2 intact. In contrast, in a cellular context, these mutants result in unique combinations of functional consequences, including altered binding to NLGN2, decreased capacity to conceal NLGN2 from NRXN1ß, and/or suppressed NLGN2-mediated inhibitory presynaptic differentiation, despite the mutations being located far from the MDGA1-NLGN2 interaction site. Thus, the 3D conformation of the entire MDGA1 ectodomain appears critical for its function, and its NLGN-binding site on Ig1-Ig2 is not independent of the rest of the molecule. As a result, global 3D conformational changes to the MDGA1 ectodomain via strategic elbows may form a molecular mechanism to regulate MDGA1 action within the synaptic cleft.


Subject(s)
Neural Cell Adhesion Molecules , Synapses , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Synapses/metabolism , Binding Sites , Immunoglobulins/genetics , Immunoglobulins/metabolism , Molecular Conformation , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism
18.
J Clin Med ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36902591

ABSTRACT

Recent findings implicate brain vulnerability following long-gap esophageal atresia (LGEA) repair. We explored the relationship between easily quantifiable clinical measures and previously reported brain findings in a pilot cohort of infants following LGEA repair. MRI measures (number of qualitative brain findings; normalized brain and corpus callosum volumes) were previously reported in term-born and early-to-late premature infants (n = 13/group) <1 year following LGEA repair with the Foker process. The severity of underlying disease was classified by an (1) American Society of Anesthesiologist (ASA) physical status and (2) Pediatric Risk Assessment (PRAm) scores. Additional clinical end-point measures included: anesthesia exposure (number of events; cumulative minimal alveolar concentration (MAC) exposure in hours), length (in days) of postoperative intubated sedation, paralysis, antibiotic, steroid, and total parenteral nutrition (TPN) treatment. Associations between clinical end-point measures and brain MRI data were tested using Spearman rho and multivariable linear regression. Premature infants were more critically ill per ASA scores, which showed a positive association with the number of cranial MRI findings. Clinical end-point measures together significantly predicted the number of cranial MRI findings for both term-born and premature infant groups, but none of the individual clinical measures did on their own. Listed easily quantifiable clinical end-point measures could be used together as indirect markers in assessing the risk of brain abnormalities following LGEA repair.

19.
Diabetes Care ; 46(5): 1005-1013, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36920087

ABSTRACT

OBJECTIVE: Previous studies showed that inhibiting lymphocyte costimulation reduces declining ß-cell function in individuals newly diagnosed with type 1 diabetes. We tested whether abatacept would delay or prevent progression of type 1 diabetes from normal glucose tolerance (NGT) to abnormal glucose tolerance (AGT) or to diabetes and the effects of treatment on immune and metabolic responses. RESEARCH DESIGN AND METHODS: We conducted a phase 2, randomized, placebo-controlled, double-masked trial of abatacept in antibody-positive participants with NGT who received monthly abatacept/placebo infusions for 12 months. The end point was AGT or diabetes, assessed by oral glucose tolerance tests. RESULTS: A total of 101 participants received abatacept and 111 placebo. Of these, 81 (35 abatacept and 46 placebo) met the end point of AGT or type 1 diabetes diagnosis (hazard ratio 0.702; 95% CI 0.452, 1.09; P = 0.11) The C-peptide responses to oral glucose tolerance tests were higher in the abatacept arm (P < 0.03). Abatacept reduced the frequency of inducible T-cell costimulatory (ICOS)+ PD1+ T-follicular helper (Tfh) cells during treatment (P < 0.0001), increased naive CD4+ T cells, and also reduced the frequency of CD4+ regulatory T cells (Tregs) from the baseline (P = 0.0067). Twelve months after treatment, the frequency of ICOS+ Tfh, naive CD4+ T cells, and Tregs returned to baseline. CONCLUSIONS: Although abatacept treatment for 1 year did not significantly delay progression to glucose intolerance in at-risk individuals, it impacted immune cell subsets and preserved insulin secretion, suggesting that costimulation blockade may modify progression of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Abatacept/therapeutic use , Abatacept/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Immunosuppressive Agents , T-Lymphocytes, Regulatory , Glucose/therapeutic use
20.
J Endocr Soc ; 7(3): bvad003, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36741943

ABSTRACT

Context: Participants with stage 1 or 2 type 1 diabetes (T1D) qualify for prevention trials, but factors involved in screening for such trials are largely unknown. Objective: To identify factors associated with screening for T1D prevention trials. Methods: This study included TrialNet Pathway to Prevention participants who were eligible for a prevention trial: oral insulin (TN-07, TN-20), teplizumab (TN-10), abatacept (TN-18), and oral hydroxychloroquine (TN-22). Univariate and multivariate logistic regression models were used to examine participant, site, and study factors at the time of prevention trial accrual. Results: Screening rates for trials were: 50% for TN-07 (584 screened/1172 eligible), 9% for TN-10 (106/1249), 24% for TN-18 (313/1285), 17% for TN-20 (113/667), and 28% for TN-22 (371/1336). Younger age and male sex were associated with higher screening rates for prevention trials overall and for oral therapies. Participants with an offspring with T1D showed lower rates of screening for all trials and oral drug trials compared with participants with other first-degree relatives as probands. Site factors, including larger monitoring volume and US site vs international site, were associated with higher prevention trial screening rates. Conclusions: Clear differences exist between participants who screen for prevention trials and those who do not screen and between the research sites involved in prevention trial screening. Participant age, sex, and relationship to proband are significantly associated with prevention trial screening in addition to key site factors. Identifying these factors can facilitate strategic recruitment planning to support rapid and successful enrollment into prevention trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...