Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bioinformatics ; 36(20): 5076-5085, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33026062

ABSTRACT

MOTIVATION: The transcriptomic data are being frequently used in the research of biomarker genes of different diseases and biological states. The most common tasks there are the data harmonization and treatment outcome prediction. Both of them can be addressed via the style transfer approach. Either technical factors or any biological details about the samples which we would like to control (gender, biological state, treatment, etc.) can be used as style components. RESULTS: The proposed style transfer solution is based on Conditional Variational Autoencoders, Y-Autoencoders and adversarial feature decomposition. To quantitatively measure the quality of the style transfer, neural network classifiers which predict the style and semantics after training on real expression were used. Comparison with several existing style-transfer based approaches shows that proposed model has the highest style prediction accuracy on all considered datasets while having comparable or the best semantics prediction accuracy. AVAILABILITY AND IMPLEMENTATION: https://github.com/NRshka/stvae-source. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neural Networks, Computer , Semantics , RNA-Seq , Software , Exome Sequencing
2.
Sensors (Basel) ; 20(13)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610652

ABSTRACT

In vitro cellular models are promising tools for studying normal and pathological conditions. One of their important applications is the development of genetically engineered biosensor systems to investigate, in real time, the processes occurring in living cells. At present, there are fluorescence, protein-based, sensory systems for detecting various substances in living cells (for example, hydrogen peroxide, ATP, Ca2+ etc.,) or for detecting processes such as endoplasmic reticulum stress. Such systems help to study the mechanisms underlying the pathogenic processes and diseases and to screen for potential therapeutic compounds. It is also necessary to develop new tools for the processing and analysis of obtained microimages. Here, we present our web-application CellCountCV for automation of microscopic cell images analysis, which is based on fully convolutional deep neural networks. This approach can efficiently deal with non-convex overlapping objects, that are virtually inseparable with conventional image processing methods. The cell counts predicted with CellCountCV were very close to expert estimates (the average error rate was < 4%). CellCountCV was used to analyze large series of microscopic images obtained in experimental studies and it was able to demonstrate endoplasmic reticulum stress development and to catch the dose-dependent effect of tunicamycin.


Subject(s)
Cell Count , Image Processing, Computer-Assisted , Neural Networks, Computer , Automation , Humans , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL