Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37686733

ABSTRACT

Long COVID is a recognized post-viral syndrome characterized by neurological, somatic and neuropsychiatric symptoms that might last for long time after SARS-CoV-2 infection. An ever-growing number of patients come to the observation of General Practitioners complaining of mild or moderate symptoms after the resolution of the acute infection. Nine General Practitioners from the Rome area (Italy) performed a retrospective analysis in order to evaluate the role of the supplementation with Palmitoylethanolamide co-ultramicronized with Luteolin (PEALUT) on neurologic and clinical symptoms reported by their patients after COVID-19 resolution. Supplementation with PEALUT helped to improve all patient-reported symptoms, especially pain, anxiety and depression, fatigue, brain fog, anosmia and dysgeusia, leading to an overall improvement in patients' health status. To our knowledge these are the first data presented on Long COVID patients collected in a territorial setting. Despite their preliminary nature, these results highlight the pathogenetic role of "non-resolving" neuroinflammation in Long COVID development and consequently the importance of its control in the resolution of the pathology and put the focus on the General Practitioner as the primary figure for early detection and management of Long COVID syndrome in a real-life setting. Future randomized, controlled, perspective clinical trials are needed to confirm this preliminary observation.


Subject(s)
COVID-19 , General Practitioners , Humans , Post-Acute COVID-19 Syndrome , Luteolin , Retrospective Studies , SARS-CoV-2
2.
Biochimie ; 121: 52-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26620258

ABSTRACT

It is well known the role of oxidative stress in the pathophysiology of Alzheimer's disease (AD) and of other neurodegenerative pathologies. We have previously documented that Amyloid beta peptide (1-42) (Abeta) dependent-oxidative modifications affect red blood cell (RBC) morphology and function. Experimental studies show that caffeine (CF) consumption is inversely correlated with AD. In this study, we investigated the role played by RBC in the protective mechanism elicited by CF against Abeta mediated toxicity. PS exposure levels by FACS analysis, as well as protein band 3 functionality analysis, indicated that CF at 100 µM protected against Abeta-mediated membrane alterations, which are known to occur in AD. Moreover, CF counteracts inhibition of ATP release from RBC by Abeta, restoring its ability to modulate vasodilation. Concurrently, analysis of protein kinase C (PKC) and caspase 3 activities, responsible for cytoskeleton alterations, revealed that unlike to caspase 3, PKCα activation induced by Abeta was fully abolished by CF through a mechanism involving Acetylcholinesterase (AChE), located on external face of RBC plasma membrane. These results provide support for the hypothesis concerning the protective role of CF in AD patients could include also a peripheral mechanism involving RBC.


Subject(s)
Acetylcholinesterase/metabolism , Amyloid beta-Peptides/metabolism , Protein Kinase C/metabolism , Caffeine , Caspase 3/metabolism , Erythrocytes/metabolism , Humans
3.
Open Biochem J ; 8: 68-73, 2014.
Article in English | MEDLINE | ID: mdl-25246985

ABSTRACT

Palytoxin (PTX), a marine toxin, represents an increasing hazard for human health. Despite its high toxicity for biological systems, the mechanisms triggered by PTX, are not well understood. The high affinity of PTX for erythrocyte Na(+)/K(+)-ATPase pump is largely known, and it indicates PTX as a sensitive tool to characterize the signal transducer role for Na(+)/K(+)-ATPase pump. Previously, it has been reported that in red blood cells (RBC), probably via a signal transduction generated by the formation of a PTX-Na(+)/K(+)-ATPase complex, PTX alters band 3 functions and glucose metabolism. The present study addresses the question of which other signaling pathways are regulated by Na(+)/K(+)-ATPase in RBC. Here it has been evidenced that PTX following its interaction with Na(+)/K(+)-ATPase pump, alters RBC morphology and this event is correlated to decreases by 30% in nitrites and nitrates levels, known as markers of plasma membrane eNOS activity. Orthovanadate (OV), an antagonist of PTX binding to Na(+)/K(+)-ATPase pump, was able to reverse the effects elicited by PTX. Finally, current investigation firstly suggests that Na(+)/K(+)-ATPase pump, following its interaction with PTX, triggers a signal transduction involved in NO metabolism regulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...