Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters











Publication year range
1.
Autophagy ; : 1-23, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37840274

ABSTRACT

Activated transmembrane receptors continue to signal following endocytosis and are only silenced upon ESCRT-mediated internalization of the receptors into intralumenal vesicles (ILVs) of the endosomes. Accordingly, endosomes with dysfunctional receptor internalization into ILVs can cause sustained receptor signaling which has been implicated in cancer progression. Here, we describe a surveillance mechanism that allows cells to detect and clear physically intact endosomes with aberrant receptor accumulation and elevated signaling. Proximity biotinylation and proteomics analyses of ESCRT-0 defective endosomes revealed a strong enrichment of the ubiquitin-binding macroautophagy/autophagy receptors SQSTM1 and NBR1, a phenotype that was confirmed in cell culture and fly tissue. Live cell microscopy demonstrated that loss of the ESCRT-0 subunit HGS/HRS or the ESCRT-I subunit VPS37 led to high levels of ubiquitinated and phosphorylated receptors on endosomes. This was accompanied by dynamic recruitment of NBR1 and SQSTM1 as well as proteins involved in autophagy initiation and autophagosome biogenesis. Light microscopy and electron tomography revealed that endosomes with intact limiting membrane, but aberrant receptor downregulation were engulfed by phagophores. Inhibition of autophagy caused increased intra- and intercellular signaling and directed cell migration. We conclude that dysfunctional endosomes are surveyed and cleared by an autophagic process, simaphagy, which serves as a failsafe mechanism in signal termination.Abbreviations: AKT: AKT serine/threonine kinase; APEX2: apurinic/apyrimidinic endodoexyribonuclease 2; ctrl: control; EEA1: early endosome antigen 1; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HGS/HRS: hepatocyte growth factor-regulated tyrosine kinase substrate; IF: immunofluorescence; ILV: intralumenal vesicle; KO: knockout; LIR: LC3-interacting region; LLOMe: L-leucyl-L-leucine methyl ester (hydrochloride); MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; NBR1: NBR1 autophagy cargo receptor; PAG10: Protein A-conjugated 10-nm gold; RB1CC1/FIP200: RB1 inducible coiled-coil 1; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TUB: Tubulin; UBA: ubiquitin-associated; ULK1: unc-51 like autophagy activating kinase 1; VCL: Vinculin; VPS37: VPS37 subunit of ESCRT-I; WB: western blot; WT: wild-type.

2.
EMBO J ; 42(14): e112845, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37272163

ABSTRACT

The canonical autophagy pathway in mammalian cells sequesters diverse cytoplasmic cargo within the double membrane autophagosomes that eventually convert into degradative compartments via fusion with endolysosomal intermediates. Here, we report that autophagosomal membranes show permeability in cells lacking principal ATG8 proteins (mATG8s) and are unable to mature into autolysosomes. Using a combination of methods including a novel in vitro assay to measure membrane sealing, we uncovered a previously unappreciated function of mATG8s to maintain autophagosomal membranes in a sealed state. The mATG8 proteins GABARAP and LC3A bind to key ESCRT-I components contributing, along with other ESCRTs, to the integrity and imperviousness of autophagic membranes. Autophagic organelles in cells lacking mATG8s are permeant, are arrested as amphisomes, and do not progress to functional autolysosomes. Thus, autophagosomal organelles need to be maintained in a sealed state in order to become lytic autolysosomes.


Subject(s)
Autophagy , Microtubule-Associated Proteins , Animals , Humans , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Autophagosomes/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Mammals
3.
EMBO J ; 41(23): e111289, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36221902

ABSTRACT

The NOD1/2-RIPK2 is a key cytosolic signaling complex that activates NF-κB pro-inflammatory response against invading pathogens. However, uncontrolled NF-κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs-RIPK2-NF-κB innate immune axis is activated and resolved remain poorly understood. Here, we demonstrate that bacterial infection induces the formation of endogenous RIPK2 oligomers (RIPosomes) that are self-assembling entities that coat the bacteria to induce NF-κB response. Next, we show that autophagy proteins IRGM and p62/SQSTM1 physically interact with NOD1/2, RIPK2 and RIPosomes to promote their selective autophagy and limit NF-κB activation. IRGM suppresses RIPK2-dependent pro-inflammatory programs induced by Shigella and Salmonella. Consistently, the therapeutic inhibition of RIPK2 ameliorates Shigella infection- and DSS-induced gut inflammation in Irgm1 KO mice. This study identifies a unique mechanism where the innate immune proteins and autophagy machinery are recruited together to the bacteria for defense as well as for maintaining immune homeostasis.


Subject(s)
Bacterial Infections , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Mice, Inbred NOD , Autophagy , Immunity, Innate , Homeostasis
4.
Development ; 149(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-35997536

ABSTRACT

Complex organ development depends on single lumen formation and its expansion during tubulogenesis. This can be achieved by correct mitotic spindle orientation during cell division, combined with luminal fluid filling that generates hydrostatic pressure. Using a human 3D cell culture model, we have identified two regulators of these processes. We find that pleckstrin homology leucine-rich repeat protein phosphatase (PHLPP) 2 regulates mitotic spindle orientation, and thereby midbody positioning and maintenance of a single lumen. Silencing the sole PHLPP family phosphatase in Drosophila melanogaster, phlpp, resulted in defective spindle orientation in Drosophila neuroblasts. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) is the main channel regulating fluid transport in this system, stimulated by phosphorylation by protein kinase A and inhibited by the AMP-activated protein kinase AMPK. During lumen expansion, CFTR remains open through the action of PHLPP1, which stops activated AMPK from inhibiting ion transport through CFTR. In the absence of PHLPP1, the restraint on AMPK activity is lost and this tips the balance in the favour of channel closing, resulting in the lack of lumen expansion and accumulation of mucus.


Subject(s)
AMP-Activated Protein Kinases , Cystic Fibrosis Transmembrane Conductance Regulator , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation
5.
EMBO J ; 41(12): e111424, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35561082

ABSTRACT

The lysosomal degradation pathway of autophagy depends on a set of evolutionarily conserved autophagy-related molecules (ATGs) bestowed with the power to direct membrane trafficking and biology. In this issue of EMBO Journal, Kakanj P et al reveal a surprising role for the autophagy machinery in cell fusion (Kakanj et al, 2022). Autophagy is physiologically required for cell syncytium formation through dismantling the lateral plasma membrane during wound healing, and unchecked autophagy can drive cell fusion in epithelial tissues without compromising epithelial integrity.


Subject(s)
Autophagy , Lysosomes , Autophagy/physiology , Cell Communication , Lysosomes/metabolism
6.
Sci Rep ; 12(1): 2056, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136137

ABSTRACT

Drosophila melanogaster tumor models are growing in popularity, driven by the high degree of genetic as well as functional conservation to humans. The most common method to measure the effects of a tumor on distant organs of a human cancer patient is to use computed tomography (CT), often used in diagnosing cachexia, a debilitating cancer-induced syndrome most visibly characterized by loss of muscle mass. Successful application of high resolution micro-CT scanning of D. melanogaster was recently reported and we here present the segmentation of all visible larval organs at several stages of tumor development. We previously showed the strong expected reduction in muscle mass as the tumor develops, and we here report a surprisingly strong reduction also in gut and Malpighian tubules (kidney) volume. Time-point of tumor development was found to have a stronger correlation to cachectic organ volume loss than tumor volume, giving support to the previously proposed idea that tumor size does not directly determine degree of cachexia.


Subject(s)
Cachexia/pathology , Drosophila melanogaster/genetics , Gastrointestinal Tract/pathology , Malpighian Tubules/pathology , Neoplasms/pathology , Animals , Disease Models, Animal , Drosophila melanogaster/embryology , Drosophila melanogaster/growth & development , Humans , Larva/growth & development , Organ Size/physiology , X-Ray Microtomography
7.
Cell ; 184(24): 5950-5969.e22, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34741801

ABSTRACT

The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.


Subject(s)
Autophagosomes/virology , COVID-19/virology , Autophagy , COVID-19/metabolism , CRISPR-Cas Systems , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Endosomes/physiology , Endosomes/virology , Golgi Apparatus/physiology , HEK293 Cells , HeLa Cells , Humans , Membrane Fusion , Microscopy, Confocal , Phagosomes/metabolism , Phagosomes/virology , Qa-SNARE Proteins/biosynthesis , Receptors, sigma/biosynthesis , SARS-CoV-2 , Sarcoplasmic Reticulum Calcium-Transporting ATPases/biosynthesis , Synaptotagmins/biosynthesis , Sigma-1 Receptor
8.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445578

ABSTRACT

The phenomenon of how oncogenes and tumor-suppressor mutations can synergize to promote tumor fitness and cancer progression can be studied in relatively simple animal model systems such as Drosophila melanogaster. Almost two decades after the landmark discovery of cooperative oncogenesis between oncogenic RasV12 and the loss of the tumor suppressor scribble in flies, this and other tumor models have provided new concepts and findings in cancer biology that has remarkable parallels and relevance to human cancer. Here we review findings using the RasV12; scrib-/- tumor model and how it has contributed to our understanding of how these initial simple genetic insults cooperate within the tumor cell to set in motion the malignant transformation program leading to tumor growth through cell growth, cell survival and proliferation, dismantling of cell-cell interactions, degradation of basement membrane and spreading to other organs. Recent findings have demonstrated that cooperativity goes beyond cell intrinsic mechanisms as the tumor interacts with the immediate cells of the microenvironment, the immune system and systemic organs to eventually facilitate malignant progression.


Subject(s)
Carcinogenesis , Membrane Proteins/metabolism , Mutation , Neoplasms/pathology , Tumor Microenvironment , Tumor Suppressor Proteins/metabolism , ras Proteins/metabolism , Animals , Humans , Membrane Proteins/genetics , Neoplasms/etiology , Neoplasms/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics , ras Proteins/genetics
9.
EMBO J ; 40(18): e107336, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34309071

ABSTRACT

During tumor growth-when nutrient and anabolic demands are high-autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras-driven tumors additionally invoke non-autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well-characterized malignant tumor model in Drosophila melanogaster. Micro-computed X-ray tomography and metabolic profiling reveal that RasV12 ; scrib-/- tumors grow 10-fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, -motility, -feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.


Subject(s)
Autophagy , Energy Metabolism , Neoplasms/etiology , Neoplasms/metabolism , Nutrients/metabolism , Animals , Autophagy/genetics , Cachexia/diagnostic imaging , Cachexia/etiology , Cachexia/pathology , Disease Models, Animal , Disease Progression , Drosophila melanogaster , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Neoplasms/complications
10.
BMC Biol ; 19(1): 85, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33966633

ABSTRACT

BACKGROUND: Radioactive or stable isotopic labeling of metabolites is a strategy that is routinely used to map the cellular fate of a selected labeled metabolite after it is added to cell culture or to the circulation of an animal. However, a labeled metabolite can be enzymatically changed in cellular metabolism, complicating the use of this experimental strategy to understand how a labeled metabolite moves between organs. These methods are also technically demanding, expensive and potentially toxic. To allow quantification of the bulk movement of metabolites between organs, we have developed a novel application of stable isotope ratio mass spectrometry (IRMS). RESULTS: We exploit natural differences in 13C/12C ratios of plant nutrients for a low-cost and non-toxic carbon labeling, allowing a measurement of bulk carbon transfer between organs in vivo. IRMS measurements were found to be sufficiently sensitive to measure organs from individual Drosophila melanogaster larvae, giving robust measurements down to 2.5 µg per sample. We apply the method to determine if carbon incorporated into a growing solid tumor is ultimately derived from food or host tissues. CONCLUSION: Measuring tumor growth in a D. melanogaster larvae tumor model reveals that these tumors derive a majority of carbon from host sources. We believe the low cost and non-toxic nature of this methodology gives it broad applicability to study carbon flows between organs also in other animals and for a range of other biological questions.


Subject(s)
Neoplasms , Animals , Carbon , Carbon Isotopes , Drosophila melanogaster , Mass Spectrometry
11.
Cancer Res ; 81(2): 315-331, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33067265

ABSTRACT

DZIP3/hRUL138 is a poorly characterized RNA-binding RING E3-ubiquitin ligase with functions in embryonic development. Here we demonstrate that DZIP3 is a crucial driver of cancer cell growth, migration, and invasion. In mice and zebrafish cancer models, DZIP3 promoted tumor growth and metastasis. In line with these results, DZIP3 was frequently overexpressed in several cancer types. Depletion of DZIP3 from cells resulted in reduced expression of Cyclin D1 and a subsequent G1 arrest and defect in cell growth. Mechanistically, DZIP3 utilized its two different domains to interact and stabilize Cyclin D1 both at mRNA and protein levels. Using an RNA-binding lysine-rich region, DZIP3 interacted with the AU-rich region in 3' untranslated region of Cyclin D1 mRNA and stabilized it. Using a RING E3-ligase domain, DZIP3 interacted and increased K63-linked ubiquitination of Cyclin D1 protein to stabilize it. Remarkably, DZIP3 interacted with, ubiquitinated, and stabilized Cyclin D1 predominantly in the G1 phase of the cell cycle, where it is needed for cell-cycle progression. In agreement with this, a strong positive correlation of mRNA expression between DZIP3 and Cyclin D1 in different cancer types was observed. Additionally, DZIP3 regulated several cell cycle proteins by modulating the Cyclin D1-E2F axes. Taken together, this study demonstrates for the first time that DZIP3 uses a unique two-pronged mechanism in its stabilization of Cyclin D1 to drive cell-cycle and cancer progression. SIGNIFICANCE: These findings show that DZIP3 is a novel driver of cell-cycle and cancer progression via its control of Cyclin D1 mRNA and protein stability in a cell-cycle phase-dependent manner. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/2/315/F1.large.jpg.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Cyclin D1/chemistry , Gene Expression Regulation, Neoplastic , Lung Neoplasms/secondary , RNA Stability , RNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Movement , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Prognosis , RNA-Binding Proteins/genetics , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays , Zebrafish
12.
Autophagy ; 16(12): 2305-2306, 2020 12.
Article in English | MEDLINE | ID: mdl-33070669

ABSTRACT

Macroautophagy/autophagy delivers cytoplasmic cargo to lysosomes for degradation. In yeast, the single Atg8 protein plays a role in the formation of autophagosomes whereas in mammalian cells there are five to seven paralogs, referred to as mammalian Atg8s (mAtg8s: GABARAP, GABARAPL1, GABARAPL2, LC3A, LC3B, LC3B2 and LC3C) with incompletely defined functions. Here we show that a subset of mAtg8s directly control lysosomal biogenesis. This occurs at the level of TFEB, the principal regulator of the lysosomal transcriptional program. mAtg8s promote TFEB's nuclear translocation in response to stimuli such as starvation. GABARAP interacts directly with TFEB, whereas RNA-Seq analyses reveal that knockout of six genes encoding mAtg8s, or a triple knockout of the genes encoding all GABARAPs, diminishes the TFEB transcriptional program. We furthermore show that GABARAPs in cooperation with other proteins, IRGM, a factor implicated in tuberculosis and Crohn disease, and STX17, are required during starvation for optimal inhibition of MTOR, an upstream kinase of TFEB, and activation of the PPP3/calcineurin phosphatase that dephosphorylates TFEB, thus promoting its nuclear translocation. In conclusion, mAtg8s, IRGM and STX17 control lysosomal biogenesis by their combined or individual effects on MTOR, TFEB, and PPP3/calcineurin, independently of their roles in the formation of autophagosomal membranes. Abbreviations: AMPK: AMP-activated protein kinase; IRGM: immunity related GTPase M; mAtg8s: mammalian Atg8 proteins; MTOR: mechanistic target of rapamycin kinase; PPP3CB: protein phosphatase 3 catalytic subunit beta; RRAGA: Ras related GTP binding A.; STX17: syntaxin 17; ULK1: unc-51 like autophagy activating kinase 1.

13.
Nat Cell Biol ; 22(8): 973-985, 2020 08.
Article in English | MEDLINE | ID: mdl-32753672

ABSTRACT

Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.


Subject(s)
Autophagy-Related Protein 8 Family/physiology , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , GTP-Binding Proteins/physiology , TOR Serine-Threonine Kinases/metabolism , Calcineurin/metabolism , Cell Line , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Humans , Lysosomes/physiology , Protein Transport , Qa-SNARE Proteins/metabolism
15.
EMBO Rep ; 21(9): e50051, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32715615

ABSTRACT

Activation of the type 1 interferon response is extensively connected to the pathogenesis of autoimmune diseases. Loss of function of Immunity Related GTPase M (IRGM) has also been associated to several autoimmune diseases, but its mechanism of action is unknown. Here, we found that IRGM is a master negative regulator of the interferon response. Several nucleic acid-sensing pathways leading to interferon-stimulated gene expression are highly activated in IRGM knockout mice and human cells. Mechanistically, we show that IRGM interacts with nucleic acid sensor proteins, including cGAS and RIG-I, and mediates their p62-dependent autophagic degradation to restrain interferon signaling. Further, IRGM deficiency results in defective mitophagy leading to the accumulation of defunct leaky mitochondria that release cytosolic DAMPs and mtROS. Hence, IRGM deficiency increases not only the levels of the sensors, but also those of the stimuli that trigger the activation of the cGAS-STING and RIG-I-MAVS signaling axes, leading to robust induction of IFN responses. Taken together, this study defines the molecular mechanisms by which IRGM maintains interferon homeostasis and protects from autoimmune diseases.


Subject(s)
Autoimmune Diseases , Autoimmunity , Animals , Autoimmune Diseases/genetics , Autoimmunity/genetics , Autophagy , Mice , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction
16.
Nat Commun ; 10(1): 5284, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754102

ABSTRACT

Metabolic dysfunction is a primary feature of Werner syndrome (WS), a human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. WS patients exhibit severe metabolic phenotypes, but the underlying mechanisms are not understood, and whether the metabolic deficit can be targeted for therapeutic intervention has not been determined. Here we report impaired mitophagy and depletion of NAD+, a fundamental ubiquitous molecule, in WS patient samples and WS invertebrate models. WRN regulates transcription of a key NAD+ biosynthetic enzyme nicotinamide nucleotide adenylyltransferase 1 (NMNAT1). NAD+ repletion restores NAD+ metabolic profiles and improves mitochondrial quality through DCT-1 and ULK-1-dependent mitophagy. At the organismal level, NAD+ repletion remarkably extends lifespan and delays accelerated aging, including stem cell dysfunction, in Caenorhabditis elegans and Drosophila melanogaster models of WS. Our findings suggest that accelerated aging in WS is mediated by impaired mitochondrial function and mitophagy, and that bolstering cellular NAD+ levels counteracts WS phenotypes.


Subject(s)
Aging, Premature/metabolism , Mitophagy , NAD/metabolism , Werner Syndrome Helicase/metabolism , Werner Syndrome/metabolism , Aging, Premature/genetics , Animals , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Disease Models, Animal , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mutation , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Werner Syndrome/genetics , Werner Syndrome Helicase/genetics
17.
Dev Cell ; 51(1): 4-5, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31593651

ABSTRACT

Cell competition eradicates weaker cells from an epithelium and is important for organ homeostasis. In this issue of Developmental Cell, Nagata et al. (2019) uncover that eradication of loser cells depends on autophagy-mediated cell death.


Subject(s)
Autophagy , Homeostasis
18.
Adv Exp Med Biol ; 1167: 113-127, 2019.
Article in English | MEDLINE | ID: mdl-31520352

ABSTRACT

The resurgence of Drosophila as a recognized model for carcinogenesis has contributed greatly to our conceptual advance and mechanistic understanding of tumor growth in vivo. With its powerful genetics, Drosophila has emerged as a prime model organism to study cell biology and physiological functions of autophagy. This has enabled exploration of the contributions of autophagy in several tumor models. Here we review the literature of autophagy related to tumorigenesis in Drosophila. Functional analysis of core autophagy components does not provide proof for a classical tumor suppression role for autophagy alone. Autophagy both serve to suppress or support tumor growth. These effects are context-specific, depending on cell type and oncogenic or tumor suppressive lesion. Future delineation of how autophagy impinges on tumorigenesis will demand to untangle in detail, the regulation and flux of autophagy in the respective tumor models. The downstream tumor-regulative roles of autophagy through organelle homeostasis, metabolism, selective autophagy or alternative mechanisms remain largely unexplored.


Subject(s)
Autophagy , Carcinogenesis , Drosophila , Animals , Disease Models, Animal
19.
Dev Cell ; 49(1): 130-144.e6, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30827897

ABSTRACT

Syntaxin 17 (Stx17) has been implicated in autophagosome-lysosome fusion. Here, we report that Stx17 functions in assembly of protein complexes during autophagy initiation. Stx17 is phosphorylated by TBK1 whereby phospho-Stx17 controls the formation of the ATG13+FIP200+ mammalian pre-autophagosomal structure (mPAS) in response to induction of autophagy. TBK1 phosphorylates Stx17 at S202. During autophagy induction, Stx17pS202 transfers from the Golgi, where its steady-state pools localize, to the ATG13+FIP200+ mPAS. Stx17pS202 was in complexes with ATG13 and FIP200, whereas its non-phosphorylatable mutant Stx17S202A was not. Stx17 or TBK1 knockouts blocked ATG13 and FIP200 puncta formation. Stx17 or TBK1 knockouts reduced the formation of ATG13 protein complexes with FIP200 and ULK1. Endogenous Stx17pS202 colocalized with LC3B following induction of autophagy. Stx17 knockout diminished LC3 response and reduced sequestration of the prototypical bulk autophagy cargo lactate dehydrogenase. We conclude that Stx17 is a TBK1 substrate and that together they orchestrate assembly of mPAS.


Subject(s)
Autophagy/genetics , Multiprotein Complexes/genetics , Protein Serine-Threonine Kinases/genetics , Qa-SNARE Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Autophagosomes/metabolism , Autophagy-Related Proteins/genetics , Gene Knockout Techniques , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Humans , Lysosomes/metabolism , Membrane Fusion/genetics , Multiprotein Complexes/metabolism , Mutation/genetics , Phosphorylation , Protein-Tyrosine Kinases/genetics , Signal Transduction/genetics
20.
SELECTION OF CITATIONS
SEARCH DETAIL