Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomech ; 102: 109495, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31767285

ABSTRACT

Degenerative lumbar scoliosis presumably alters spinal biomechanics, but a lack of quantitative reference measurements of these spines exists. We aimed to assess the biomechanical properties of spines with degenerative scoliosis, and to relate these to intervertebral disc degeneration (DD) and Cobb angle. Secondly, we compared these results to previous measurements of non-scoliotic spines. Ten cadaveric spines (Th12-L5, mean age 82 ±â€¯11 years) with Cobb angle ≥10° and apex at L3 were acquired. Three loading cycles (-4 to 4 Nm) were applied in flexion/extension (FE), lateral bending (LB), and axial rotation (AR). The range of motion (ROM), neutral zone (NZ) stiffness, NZ ROM, elastic zone (EZ) stiffness and hysteresis were calculated for each motion segment in the loading direction. ROM was calculated in coupled directions, expressed as a percentage of rotation in the loaded direction. For Th12-L5, there was a ROM (degrees ±â€¯SD) of 14.9 ±â€¯6.5 in FE, 14.9 ±â€¯7.8 in LB, and 10.2 ±â€¯5.5 in AR. The median (Nm/degree (Q1;Q3)) NZs was 0.24 (0.19;0.35) in FE, 0.25 (0.22;0.42) in LB, and 0.49 (0.33;0.99) in AR. Greater coupled motions related to higher Cobb angle, especially during AR on segments around the apex (FE: ρ = 0.539, p = 0.021 and LB: ρ = 0.821, p = 0.000). DD correlated to lower ROM and increased NZs on L2-L3 in FE (ρ = -0.721, p = 0.028 and ρ = 0.694, p = 0.038, respectively). Compared to non-scoliotic spines, smaller ROM in FE (p = 0.030) was found. This study describes the biomechanical properties of lumbar spines with degenerative scoliosis. Compared to non-scoliotic spines, they tended to be stiffer and exhibited smaller ROM in FE. DD only affected the ROM and NZs of the segments around the apex.


Subject(s)
Lumbar Vertebrae/physiopathology , Movement , Scoliosis/physiopathology , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Range of Motion, Articular , Rotation
2.
JOR Spine ; 2(3): e1063, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31572980

ABSTRACT

OBJECTIVE: Possible regenerative treatments for lumbar intervertebral disc degeneration (DD) are rapidly emerging. There is consensus that the patient that would benefit most has early-stage DD, with a predicted deterioration in the near future. To identify this patient, the aim of this study was to identify prognostic factors for progression of DD. STUDY DESIGN: Systematic review. METHODS: A systematic search was performed on studies evaluating one or more prognostic factor(s) in the progression of DD. The criteria for inclusion were (a) patients diagnosed with DD on MRI, (b) progression of DD at follow-up, and (c) reporting of one or more prognostic factor(s) in progression of DD. Two authors independently assessed the methodological quality of the included studies. Due to heterogeneity in DD determinants and outcomes, only a best-evidence synthesis could be conducted. RESULTS: The search generated 3165 references, of which 16 studies met our inclusion criteria, involving 2.423 patients. Within these, a total of 23 clinical and environmental and 12 imaging factors were identified. There was strong evidence that disc herniation at baseline is associated with progression of DD at follow-up. There is limited evidence that IL6 rs1800795 genotype G/C male was associated with no progression of DD. Some clinical or environmental factors such as BMI, occupation and smoking were not associated with progression. CONCLUSIONS: Disc herniation is strongly associated with the progression of DD. Surprisingly, there was strong evidence that smoking, occupation, and several other factors were not associated with the progression of DD. Only one genetic variant may have a protective effect on progression, otherwise there was conflicting or only limited evidence for most prognostic factors. Future research into these prognostic factors with conflicting and limited evidence is not only needed to determine which patients should be targeted by regenerative therapies, but will also contribute to spinal phenotyping.

3.
Neurosurg Focus ; 46(5): E15, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31042658

ABSTRACT

OBJECTIVEDegenerative lumbar scoliosis, or de novo degenerative lumbar scoliosis, can result in spinal canal stenosis, which is often accompanied by disabling symptoms. When surgically treated, a single-level laminectomy is performed and short-segment posterior instrumentation is placed to restore stability. However, the effects of laminectomy on spinal stability and the necessity of placing posterior instrumentation are unknown. Therefore, the aim of this study was to assess the stability of lumbar spines with degenerative scoliosis, characterized by the range of motion (ROM) and neutral zone (NZ) stiffness, after laminectomy and placement of posterior instrumentation.METHODSTen lumbar cadaveric spines (T12-L5) with a Cobb angle ≥ 10° and an apex on L3 were included. Three loading cycles were applied per direction, from -4 Nm to 4 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR). Biomechanical evaluation was performed on the native spines and after subsequent L3 laminectomy and the placement of posterior L2-4 titanium rods and pedicle screws. Nonparametric and parametric tests were used to analyze the effects of laminectomy and posterior instrumentation on NZ stiffness and ROM, respectively, both on an individual segment's motion and on the entire spine section. Spearman's rank correlation coefficient was used to study the correlation between disc degeneration and spinal stability.RESULTSThe laminectomy increased ROM by 9.5% in FE (p = 0.04) and 4.6% in LB (p = 0.01). For NZ stiffness, the laminectomy produced no significant effects. Posterior instrumentation resulted in a decrease in ROM in all loading directions (-22.2%, -24.4%, and -17.6% for FE, LB, and AR, respectively; all p < 0.05) and an increase in NZ stiffness (+44.7%, +51.7%, and +35.2% for FE, LB, and AR, respectively; all p < 0.05). The same changes were seen in the individual segments around the apex, while the adjacent, untreated segments were mostly unaffected. Intervertebral disc degeneration was found to be positively correlated to decreased ROM and increased NZ stiffness.CONCLUSIONSLaminectomy in lumbar spines with degenerative scoliosis did not result in severe spinal instability, whereas posterior instrumentation resulted in a rigid construct. Also, prior to surgery, the spines already had lower ROM and higher NZ stiffness in comparison to values shown in earlier studies on nonscoliotic spines of the same age. Hence, the authors question the clinical need for posterior instrumentation to avoid instability.


Subject(s)
Intervertebral Disc Degeneration/surgery , Laminectomy , Lumbar Vertebrae , Scoliosis/surgery , Spinal Fusion , Thoracic Vertebrae , Cadaver , Humans , Intervertebral Disc Degeneration/complications , Intervertebral Disc Degeneration/physiopathology , Range of Motion, Articular , Scoliosis/complications , Scoliosis/physiopathology
4.
Clin Orthop Relat Res ; 477(1): 232-239, 2019 01.
Article in English | MEDLINE | ID: mdl-30394951

ABSTRACT

BACKGROUND: Surgery has greatly benefited from various technologic advancements over the past decades. Surgery remains, however, mostly manual labor performed by well-trained surgeons. Little research has focused on improving osseous drilling techniques. The objective of this study was to compare the accuracy and precision of different orthopaedic drilling techniques involving the use of both index fingers. QUESTIONS/PURPOSES: (1) Does the shooting grip technique and aiming at the contralateral index finger improve accuracy and precision in drilling? (2) Is the effect of drilling technique on accuracy and precision affected by the experience level of the performer? METHODS: This study included 36 participants from two Dutch training hospitals who were subdivided into three groups (N = 12 per group) based on their surgical experience (that is, no experience, residents, and surgeons). The participants had no further experience with drilling outside the hospital nor were there other potential confounding variables that could influence the test outcomes. Participants were instructed to drill toward a target exit point on a synthetic bone model. There were four conditions: (1) clenched grip without aiming; (2) shooting grip without aiming; (3) clenched grip with aiming at the contralateral index finger; and (4) shooting grip aiming at the contralateral index finger. Participants were only used to a clenched grip without aiming in clinical practice. Each participant had to drill five times per technique per test, and the test was repeated after 4 weeks. Accuracy was defined as the systematic error of all measurements and was calculated as the mean of the five distances between the five exit points and the target exit point, whereas precision was defined as the random error of all measurements and calculated as the SD of those five distances. Accuracy and precision were analyzed using mixed-design analyses of variance. RESULTS: Accuracy was highest when using a clenched grip with aiming at the index finger (mean 4.0 mm, SD 1.1) compared with a clenched grip without aiming (mean 5.0 mm, SD 1.2, p = 0.004) and a shooting grip without aiming (mean 4.9 mm, SD 1.4, p = 0.015). The shooting grip with aiming at the index finger (mean 4.1 mm, SD 1.2) was also more accurate than a clenched grip without aiming (p = 0.006) and a shooting grip without aiming (p = 0.014). Shooting grip with aiming at the opposite index finger (median 2.0 mm, interquartile range [IQR] 1.2) showed the best precision and outperformed a clenched grip without aiming (median 2.9 mm, IQR 1.1, p = 0.016), but was not different than the shooting grip without aiming (median 2.2 mm, IQR 1.4) or the clenched grip with aiming (median 2.4 mm, IQR 1.3). The accuracy of surgeons (mean 4.1 mm, SD 1.1) was higher than the inexperienced group (mean 5.0 mm, SD 1.1, p = 0.012). The same applied for precision (median 2.2 mm, IQR 1.0 versus median 2.8 mm, IQR 1.4, p = 0.008). CONCLUSIONS: A shooting grip combined with aiming toward the index finger of the opposite hand had better accuracy and precision compared with a clenched grip alone. Based on this study, experience does matter, because the orthopaedic surgeons outperformed the less experienced participants. Based on our study, we advise surgeons to aim at the index finger of the opposite hand when possible and to align the ipsilateral index finger to the drill bit. LEVEL OF EVIDENCE: Level II, therapeutic study.


Subject(s)
Clinical Competence , Fingers/innervation , Internship and Residency , Motor Skills , Orthopedic Procedures/methods , Orthopedic Surgeons , Education, Medical, Graduate , Hand Strength , Humans , Netherlands , Orthopedic Procedures/education , Orthopedic Surgeons/education , Task Performance and Analysis
5.
J Bone Jt Infect ; 3(3): 143-149, 2018.
Article in English | MEDLINE | ID: mdl-30013896

ABSTRACT

Background: Little is known about functional outcome and quality of life (QoL) after one-stage revision for periprosthetic joint infection (PJI) of the hip. Methods: a cohort of 30 subjects treated with one-stage revision between 2011 and 2015 was identified, and questionnaires on functional outcome and QoL were distributed. Results: 28 subjects were successfully treated (93%). Most subjects were referred from other hospitals. Coagulase-negative Staphylococcus was found in 50% of the cases, and 40% of all cultured bacteria were multidrug-resistant. 25% had subsequent revision surgery, unrelated to PJI. Functional outcome was good and QoL scores were high, comparable to prosthetic joint revision surgery in general. Conclusion: Although the cohort was small and statistical analysis was not performed, this study showed that excellent results can be obtained with one-stage revision for hip PJI. Functional outcome and QoL was comparable to prosthetic joint revision surgery in general.

6.
JOR Spine ; 1(4): e1033, 2018 Dec.
Article in English | MEDLINE | ID: mdl-31463450

ABSTRACT

Intervertebral disc degeneration describes the vicious cycle of the deterioration of intervertebral discs and can eventually result in degenerative disc disease (DDD), which is accompanied by low-back pain, the musculoskeletal disorder with the largest socioeconomic impact world-wide. In more severe stages, intervertebral disc degeneration is accompanied by loss of joint space, subchondral sclerosis, and osteophytes, similar to osteoarthritis (OA) in the articular joint. Inspired by this resemblance, we investigated the analogy between human intervertebral discs and articular joints. Although embryonic origin and anatomy suggest substantial differences between the two types of joint, some features of cell physiology and extracellular matrix in the nucleus pulposus and articular cartilage share numerous parallels. Moreover, there are great similarities in the response to mechanical loading and the matrix-degrading factors involved in the cascade of degeneration in both tissues. This suggests that the local environment of the cell is more important to its behavior than embryonic origin. Nevertheless, OA is widely regarded as a true disease, while intervertebral disc degeneration is often regarded as a radiological finding and DDD is undervalued as a cause of chronic low-back pain by clinicians, patients and society. Emphasizing the similarities rather than the differences between the two diseases may create more awareness in the clinic, improve diagnostics in DDD, and provide cross-fertilization of clinicians and scientists involved in both intervertebral disc degeneration and OA.

7.
J Biomech ; 70: 10-15, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29096981

ABSTRACT

The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed.


Subject(s)
Intervertebral Disc/physiology , Osmosis , Weight-Bearing/physiology , Animals , Elasticity , Goats , Pressure , Viscosity , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL