Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Biomolecules ; 14(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38397389

ABSTRACT

The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.


Subject(s)
Diphosphates , Inositol Phosphates , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Diphosphates/metabolism , Inositol Phosphates/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
2.
Pharmaceutics ; 15(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140037

ABSTRACT

Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.

3.
Molecules ; 28(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37375389

ABSTRACT

This paper describes the synthesis of new heterocycles from oxazol-5(4H)-one and 1,2,4-triazin-6(5H)-one classes containing a phenyl-/4-bromophenylsulfonylphenyl moiety. The oxazol-5(4H)-ones were obtained via condensation of 2-(4-(4-X-phenylsulfonyl)benzamido)acetic acids with benzaldehyde/4-fluorobenzaldehyde in acetic anhydride and in the presence of sodium acetate. The reaction of oxazolones with phenylhydrazine, in acetic acid and sodium acetate, yielded the corresponding 1,2,4-triazin-6(5H)-ones. The structures of the compounds were confirmed using spectral (FT-IR, 1H-NMR, 13C-NMR, MS) and elemental analysis. The toxicity of the compounds was evaluated on Daphnia magna Straus crustaceans and on the budding yeast Saccharomyces cerevisiae. The results indicate that both the heterocyclic nucleus and halogen atoms significantly influenced the toxicity against D. magna, with the oxazolones being less toxic than triazinones. The halogen-free oxazolone had the lowest toxicity, and the fluorine-containing triazinone exhibited the highest toxicity. The compounds showed low toxicity against yeast cells, apparently due to the activity of plasma membrane multidrug transporters Pdr5 and Snq2. The predictive analyses indicated an antiproliferative effect as the most probable biological action. The PASS prediction and CHEMBL similarity studies show evidence that the compounds could inhibit certain relevant oncological protein kinases. These results correlated with toxicity assays suggest that halogen-free oxazolone could be a good candidate for future anticancer investigations.


Subject(s)
Oxazolone , Triazines , Oxazolone/chemistry , Triazines/toxicity , Sodium Acetate , Spectroscopy, Fourier Transform Infrared , Saccharomyces cerevisiae
4.
Gels ; 9(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37367146

ABSTRACT

Healthcare professionals face an ongoing challenge in managing both acute and chronic wounds, given the potential impact on patients' quality of life and the limited availability of expensive treatment options. Hydrogel wound dressings offer a promising solution for effective wound care due to their affordability, ease of use, and ability to incorporate bioactive substances that enhance the wound healing process. Our study aimed to develop and evaluate hybrid hydrogel membranes enriched with bioactive components such as collagen and hyaluronic acid. We utilized both natural and synthetic polymers and employed a scalable, non-toxic, and environmentally friendly production process. We conducted extensive testing, including an in vitro assessment of moisture content, moisture uptake, swelling rate, gel fraction, biodegradation, water vapor transmission rate, protein denaturation, and protein adsorption. We evaluated the biocompatibility of the hydrogel membranes through cellular assays and performed instrumental tests using scanning electron microscopy and rheological analysis. Our findings demonstrate that the biohybrid hydrogel membranes exhibit cumulative properties with a favorable swelling ratio, optimal permeation properties, and good biocompatibility, all achieved with minimal concentrations of bioactive agents.

5.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375810

ABSTRACT

The aim of this review is to summarize some of the most recent work in the field of cardiovascular disease (CVD) diagnosis and therapy, focusing mainly on the role of nanobodies in the development of non-invasive imaging methods, diagnostic devices, and advanced biotechnological therapy tools. In the context of the increased number of people suffering from CVDs due to a variety of factors such as sedentariness, poor nutrition, stress, and smoking, there is an urgent need for new and improved diagnostic and therapeutic methods. Nanobodies can be easily produced in prokaryotes, lower eukaryotes, and plant and mammalian cells, and offer great advantages. In the diagnosis domain, they are mainly used as labeled probes that bind to certain surface receptors or other target molecules and give important information on the severity and extent of atherosclerotic lesions, using imaging methods such as contrast-enhanced ultrasound molecular imaging (CEUMI), positron emission tomography (PET), single-photon emission computed tomography coupled with computed tomography (SPECT/CT), and PET/CT. As therapy tools, nanobodies have been used either for transporting drug-loaded vesicles to specific targets or as inhibitors for certain enzymes and receptors, demonstrated to be involved in various CVDs.

6.
Dalton Trans ; 51(48): 18383-18399, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36250294

ABSTRACT

Three enantiomeric pairs consisting of copper(II) complexes with tridentate Schiff bases have been synthesized for employing in biological assessments: 1∞[Cu2(R/S-salmet)2(H2O)] (1-R/S·H2O), 1∞[Cu(R/S-3-HOMe-5-Me-salmet)] (2-R/S), and 1∞[Cu(R/S-3-MeO-salmet)] (3-R/S) (where R/S-salmetH2, R/S-3-HOMe-5-Me-salmetH2, and R/S-3-MeO-salmetH2 result from the condensation of R/S-methionine with salicylaldehyde, 2-hydroxy-3-(hydroxymethyl)-5-methylbenzaldehyde, and 3-methoxy-salicylaldehyde, respectively, in a 1 : 1 molar ratio). The crystal structures of 1-R·H2O and 2-R/S are reported. Moreover, the 1-R/S·H2O enantiomers have been subjected to a single-crystal-to-single-crystal (SC-SC) transformation by heating at 160 °C to afford their dehydrated forms, 1∞[Cu2(R/S-salmet)2] (1-R/S), whose structures have also been crystallographically determined. The coordination polyhedra of the metal centers, the binding modes of the ligands, and the 1-D double chain assemblies generated by the chiral mononuclear units are comparatively described. The diffuse reflectance UV-Vis and circular dichroism (CD) spectra of compounds 1-R/S·H2O, 1-R/S, and 2-R/S are analysed with respect to their structural peculiarities and compared to those of 3-R/S. The UV-Vis and CD spectra of solutions of 1-R/S, 2-R/S, and 3-R/S point to the collapse of the double chains via dissolution. Biological tests performed on the model eukaryote Saccharomyces cerevisiae indicated low toxicity for 1-R/S, 2-R/S, and 3-R, and moderate toxicity for 3-S. The S-type complexes were accumulated by cells in higher quantity compared to their R-type counterparts due to selective transport via the high-affinity S-methionine transporter, Mup1. A chemogenomic analysis of 3-S toxicity performed on a collection of yeast knockout mutants revealed that most of the deleted genes identified in the screen were involved in the cell response to oxidative stress, calcium-mediated response, or metal homeostasis. Altogether, it was concluded that 3-S accumulation may perturb the redox state of the cell, also interfering with the calcium-mediated response to oxidative stress or metal-related oxidative stress.


Subject(s)
Copper , Methionine , Copper/pharmacology , Copper/chemistry , Ligands , Calcium , Molecular Structure , Schiff Bases/chemistry
7.
Molecules ; 27(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35164029

ABSTRACT

In an attempt to increase the biological activity of the 1,2,4-triazolo[1,5-a]pyrimidine scaffold through complexation with essential metal ions, the complexes trans-[Cu(mptp)2Cl2] (1), [Zn(mptp)Cl2(DMSO)] (2) (mptp: 5-methyl-7-phenyl-1,2,4-triazolo[1,5-a]pyrimidine), [Cu2(dmtp)4Cl4]·2H2O (3) and [Zn(dmtp)2Cl2] (4) (dmtp: 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine), were synthesized and characterized as new antiproliferative and antimicrobial species. Both complexes (1) and (2) crystallize in the P21/n monoclinic space group, with the tetrahedral surroundings generating a square-planar stereochemistry in the Cu(II) complex and a tetrahedral stereochemistry in the Zn(II) species. The mononuclear units are interconnected in a supramolecular network through π-π interactions between the pyrimidine moiety and the phenyl ring in (1) while supramolecular chains resulting from C-H∙∙∙π interactions were observed in (2). All complexes exhibit an antiproliferative effect against B16 tumor cells and improved antibacterial and antifungal activities compared to the free ligands. Complex (3) displays the best antimicrobial activity against all four tested strains, both in the planktonic and biofilm-embedded states, which can be correlated to its stronger DNA-binding and nuclease-activity traits.


Subject(s)
Coordination Complexes/pharmacology , Copper/chemistry , Zinc/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Coordination Complexes/chemistry , Copper/pharmacology , Crystallography, X-Ray , Humans , Ligands , Microbial Sensitivity Tests , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Zinc/pharmacology
8.
Molecules ; 26(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34833864

ABSTRACT

Novel complexes of type [Cu(N-N)(dmtp)2(OH2)](ClO4)2·dmtp ((1) N-N: 2,2'-bipyridine; (2) L: 1,10-phenantroline and dmtp: 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine) were designed in order to obtain biologically active compounds. Complexes were characterized as mononuclear species that crystallized in the space group P-1 of the triclinic system with a square pyramidal geometry around the copper (II). In addition to the antiproliferative effect on murine melanoma B16 cells, complex (1) exhibited low toxicity on normal BJ cells and did not affect membrane integrity. Complex (2) proved to be a more potent antimicrobial in comparison with (1), but both compounds were more active in comparison with dmtp-both against planktonic cells and biofilms. A stronger antimicrobial and antibiofilm effect was noticed against the Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). Both electron paramagnetic resonance (EPR) and Saccharomyces cerevisiae studies indicated that the complexes were scavengers rather than reactive oxygen species promoters. Their DNA intercalating capacity was evidenced by modifications in both absorption and fluorescence spectra. Furthermore, both complexes exhibited nuclease-like activity, which increased in the presence of hydrogen peroxide.


Subject(s)
Anti-Infective Agents , Chelating Agents , Coordination Complexes , Methicillin-Resistant Staphylococcus aureus/growth & development , Pyrimidines , Saccharomyces cerevisiae/growth & development , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Line, Tumor , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Chelating Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Mice , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology
9.
Biometals ; 34(5): 1155-1172, 2021 10.
Article in English | MEDLINE | ID: mdl-34350537

ABSTRACT

In an attempt to propose new applications for the biomedical field, complexes with mixed ligands {[Cu(bpy)2(µ2OClO3)]ClO4}n (1) and [Cu(phen)2(OH2)](ClO4)2 (2) (bpy: 2,2'-biyridine; phen and 1,10-phenantroline) were evaluated for their antibacterial and cytotoxicicity features and for the elucidation of some of the mechanisms involved. Complex (2) proved to be a very potent antibacterial agent, exhibing MIC and MBEC values 2 to 54 times lower than those obtained for complex (1) against both susceptible or resistant Gram-positive and Gram-negative strains, in planktonic or biofilm growth state. In exchange, complex (1) exhibited selective cytotoxicity against melanoma tumor cells (B16), proving a promising potential for developing novel anticancer drugs. The possible mechanisms of both antimicrobial and antitumor activity of the copper(II) complexes is their DNA intercalative ability coupled with ROS generation. The obtained results recommend the two complexes for further development as multipurpose copper-containing drugs.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chelating Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , Crystallography, X-Ray , Ligands
10.
Bioengineering (Basel) ; 8(3)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800957

ABSTRACT

Copper is essential for life, but it can be deleterious in concentrations that surpass the physiological limits. Copper pollution is related to widespread human activities, such as viticulture and wine production. To unravel aspects of how organisms cope with copper insults, we used Saccharomyces cerevisiae as a model for adaptation to high but subtoxic concentrations of copper. We found that S. cerevisiae cells could tolerate high copper concentration by forming deposits on the cell wall and that the copper-containing deposits accumulated predominantly when cells were grown statically on media prepared with reducing sugars (glucose, galactose) as sole carbon source, but not on media containing nonreducing carbon sources, such as glycerol or lactate. Exposing cells to copper in liquid media under strong agitation prevented the formation of copper-containing deposits at the cell wall. Disruption of low-affinity copper intake through the plasma membrane increased the potential of the cell to form copper deposits on the cell surface. These results imply that biotechnology problems caused by high copper concentration can be tackled by selecting yeast strains and conditions to allow the removal of excess copper from various contaminated sites in the forms of solid deposits which do not penetrate the cell.

11.
Biomolecules ; 10(11)2020 11 04.
Article in English | MEDLINE | ID: mdl-33158278

ABSTRACT

Natural polyphenols are compounds with important biological implications which include antioxidant and metal-chelating characteristics relevant for their antimicrobial, antitumor, or antiaging potential. The mechanisms linking polyphenols and heavy metals in their concerted actions on cells are not completely elucidated. In this study, we used the model eukaryotic microorganism Saccharomyces cerevisiae to detect the action of widely prevalent natural polyphenols on yeast cells defective in the main components involved in essential heavy metal transport across the plasma membrane. We found that caffeic and gallic acids interfered with Zn accumulation, causing delays in cell growth that were alleviated by Zn supplementation. The flavones morin and quercetin interfered with both Mn and Zn accumulation, which resulted in growth improvement, but supplemental Mn and especially Zn turned the initially benefic action of morin and quercetin into potential toxicity. Our results imply that caution is needed when administering food supplements or nutraceuticals which contain both natural polyphenols and essential elements, especially zinc.


Subject(s)
Antioxidants/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Metals, Heavy/metabolism , Polyphenols/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Antioxidants/metabolism , Biological Transport/drug effects , Polyphenols/metabolism , Saccharomyces cerevisiae/cytology
12.
Heliyon ; 6(10): e05352, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33145450

ABSTRACT

Anthocyanidins - the aglycone moiety of anthocyanins - are responsible for the antioxidant traits and for many of the health benefits brought by the consumption of anthocyanin-rich foods, but whether excessive anthocyanidins are deleterious to living organisms is still a matter of debate. In the present study we used the model eukaryotic microorganism Saccharomyces cerevisiae to evaluate the potential toxicity of cyanidin, one of the most prevalent anthocyanidins found in berries, grapes, purple vegetables, and red wine. We found that yeast cells lacking the transcription factors responsible for regulating the response to oxidative stress - Skn7 and Yap1 - exhibited different sensitivities to cyanidin. Cells lacking the transcription factor Skn7 were sensitive to low concentrations of cyanidin, a trait that was augmented by exposure to visible light, notably blue or green light. In contrast, the growth of yeast cells devoid of Yap1 was stimulated by low concentrations, but it was impaired by high cyanidin exposure. High, but not low cyanidin was shown to induce Yap1 translocation from cytosol to nucleus, probably by generating reactive oxygen species such as H2O2. Taken together, these observation suggested that Skn7 and Yap1 have complementary roles in adaptation to cyanidin stress, with Skn7 involved in adaptation to low concentrations and with Yap1 responsible for adaptation to high concentrations of cyanidin. The results imply that caution is needed when utilizing cyanidin-enriched supplements, especially when in combination with prolonged exposure to visible light.

13.
Molecules ; 25(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957533

ABSTRACT

Oleandrin, the main component of Nerium oleander L. extracts, is a cardiotoxic glycoside with multiple pharmacological implications, having potential anti-tumoral and antiviral characteristics. Although it is accepted that the main mechanism of oleandrin action is the inhibition of Na+/K+-ATPases and subsequent increase in cell calcium, many aspects which determine oleandrin cytotoxicity remain elusive. In this study, we used the model Saccharomyces cerevisiae to unravel new elements accounting for oleandrin toxicity. Using cells expressing the Ca2+-sensitive photoprotein aequorin, we found that oleandrin exposure resulted in Ca2+ influx into the cytosol and that failing to pump Ca2+ from the cytosol to the vacuole increased oleandrin toxicity. We also found that oleandrin exposure induced Mn2+ accumulation by yeast cells via the plasma membrane Smf1 and that mutants with defects in Mn2+ homeostasis are oleandrin-hypersensitive. Our data suggest that combining oleandrin with agents which alter Ca2+ or Mn2+ uptake may be a way of controlling oleandrin toxicity.


Subject(s)
Calcium/metabolism , Cardenolides/chemistry , Cardiac Glycosides/chemistry , Cardiac Glycosides/metabolism , Manganese/metabolism , Saccharomyces cerevisiae/drug effects , Cardenolides/pharmacology , Cardiac Glycosides/pharmacology , Cell Membrane Permeability , Cell Survival/drug effects , Cytosol/metabolism , Cytosol/ultrastructure , Enzyme Inhibitors/metabolism , Humans , Sodium-Potassium-Exchanging ATPase/metabolism , Spectrometry, Fluorescence
14.
Molecules ; 25(17)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825156

ABSTRACT

Complexes with mixed ligands [Cu(N-N)2(pmtp)](ClO4)2 ((1) N-N: 2,2'-bipyridine; (2) L: 1,10-phenanthroline and pmpt: 5-phenyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine) were synthesized and structurally and biologically characterized. Compound (1) crystallizes into space group Pa and (2) in P-1. Both complexes display an intermediate stereochemistry between the two five-coordinated ones. The biological tests indicated that the two compounds exhibited superoxide scavenging capacity, intercalative DNA properties, and metallonuclease activity. Tests on various cell systems indicated that the two complexes neither interfere with the proliferation of Saccharomyces cerevisiae or BJ healthy skin cells, nor cause hemolysis in the active concentration range. Nevertheless, the compounds showed antibacterial potential, with complex (2) being significantly more active than complex (1) against all tested bacterial strains, both in planktonic and biofilm growth state. Both complexes exhibited a very good activity against B16 melanoma cells, with a higher specificity being displayed by compound (1). Taken together, the results indicate that complexes (1) and (2) have specific biological relevance, with potential for the development of antitumor or antimicrobial drugs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Coordination Complexes/chemistry , Copper/chemistry , Heterocyclic Compounds/chemistry , Melanoma, Experimental/drug therapy , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Ligands
15.
Nutrients ; 12(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823708

ABSTRACT

Caffeine-a methylxanthine analogue of the purine bases adenine and guanine-is by far the most consumed neuro-stimulant, being the active principle of widely consumed beverages such as coffee, tea, hot chocolate, and cola. While the best-known action of caffeine is to prevent sleepiness by blocking the adenosine receptors, caffeine exerts a pleiotropic effect on cells, which lead to the activation or inhibition of various cell integrity pathways. The aim of this review is to present the main studies set to investigate the effects of caffeine on cells using the model eukaryotic microorganism Saccharomyces cerevisiae, highlighting the caffeine synergy with external cell stressors, such as irradiation or exposure to various chemical hazards, including cigarette smoke or chemical carcinogens. The review also focuses on the importance of caffeine-related yeast phenotypes used to resolve molecular mechanisms involved in cell signaling through conserved pathways, such as target of rapamycin (TOR) signaling, Pkc1-Mpk1 mitogen activated protein kinase (MAPK) cascade, or Ras/cAMP protein kinase A (PKA) pathway.


Subject(s)
Caffeine/pharmacology , Eukaryotic Cells/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Signal Transduction/drug effects , Animals , Humans
16.
Nutrients ; 11(7)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261786

ABSTRACT

Cerebrovascular accidents are currently the second major cause of death and the third leading cause of disability in the world, according to the World Health Organization (WHO), which has provided protocols for stroke prevention. Although there is a multitude of studies on the health benefits associated with anthocyanin (ACN) consumption, there is no a rigorous systematization of the data linking dietary ACN with stroke prevention. This review is intended to present data from epidemiological, in vitro, in vivo, and clinical studies dealing with the stroke related to ACN-rich diets or ACN supplements, along with possible mechanisms of action revealed by pharmacokinetic studies, including ACN passage through the blood-brain barrier (BBB).


Subject(s)
Anthocyanins/pharmacokinetics , Diet, Healthy , Dietary Supplements , Stroke/prevention & control , Animals , Anthocyanins/administration & dosage , Biological Availability , Biotransformation , Blood-Brain Barrier/metabolism , Capillary Permeability , Dietary Supplements/adverse effects , Humans , Intestinal Absorption , Nutritive Value , Risk Factors , Stroke/diagnosis , Stroke/epidemiology
17.
Antioxidants (Basel) ; 8(6)2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31216780

ABSTRACT

The beverages obtained by yeast fermentation from anthocyanin-rich natural sources (grapes, berries, brown rice, etc.) retain part of the initial pigments in the maturated drink. During the fermentation and aging processes anthocyanins undergo various chemical transformations, which include reactions with glycolytic products (especially pyruvate and acetaldehyde) or with other compounds present in the complex fermentation milieu (such as vinylphenols obtained from cinnamic acids by means of a yeast decarboxylase) yielding pigments which can be more stable than the initial anthocyanins. Overall, these compounds contribute to the organoleptic traits of the mature product, but also to the overall chemical composition which make the yeast fermented beverages important sources of dietary antioxidants. In this review, we focused on the studies regarding the changes underwent by anthocyanins during yeast-mediated fermentation, on the approaches taken to enrich the fermented beverages in anthocyanins and their derived products, and on the interrelations between yeast and anthocyanin which were of relevance for obtaining a high-quality product containing optimum amounts of anthocyanin and anthocyanin-derived products.

18.
Cells ; 8(2)2019 01 22.
Article in English | MEDLINE | ID: mdl-30678234

ABSTRACT

Transient potential receptor (TRP) channels are conserved cation channels found in most eukaryotes, known to sense a variety of chemical, thermal or mechanical stimuli. The Saccharomyces cerevisiae TRPY1 is a TRP channel with vacuolar localization involved in the cellular response to hyperosmotic shock and oxidative stress. In this study, we found that S. cerevisiae diploid cells with heterozygous deletion in TRPY1 gene are haploinsufficient when grown in synthetic media deficient in essential metal ions and that this growth defect is alleviated by non-toxic Mn2+ surplus. Using cells expressing the Ca2+-sensitive photoprotein aequorin we found that Mn2+ augmented the Ca2+ flux into the cytosol under oxidative stress, but not under hyperosmotic shock, a trait that was absent in the diploid cells with homozygous deletion of TRPY1 gene. TRPY1 activation under oxidative stress was diminished in cells devoid of Smf1 (the Mn2+-high-affinity plasma membrane transporter) but it was clearly augmented in cells lacking Pmr1 (the endoplasmic reticulum (ER)/Golgi located ATPase responsible for Mn2+ detoxification via excretory pathway). Taken together, these observations lead to the conclusion that increased levels of intracytosolic Mn2+ activate TRPY1 in the response to oxidative stress.


Subject(s)
Calcium/metabolism , Haploinsufficiency , Hydrogen Peroxide/toxicity , Manganese/pharmacology , Oxidative Stress/drug effects , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , TRPC Cation Channels/genetics , Vacuoles/metabolism , Cytosol/drug effects , Cytosol/metabolism , Diploidy , Haploinsufficiency/drug effects , Heterozygote , Mutation/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Vacuoles/drug effects
19.
Cells ; 7(12)2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30545005

ABSTRACT

The various applications of Ag(I) generated the necessity to obtain Ag(I)-accumulating organisms for the removal of surplus Ag(I) from contaminated sites or for the concentration of Ag(I) from Ag(I)-poor environments. In this study we obtained Ag(I)-accumulating cells by expressing plant metallothioneins (MTs) in the model Saccharomyces cerevisiae. The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) fused to myrGFP displaying an N-terminal myristoylation sequence for plasma membrane targeting were expressed in S. cerevisiae and checked for Ag(I)-related phenotype. The transgenic yeast cells were grown in copper-deficient media to ensure the expression of the plasma membrane high-affinity Cu(I) transporter Ctr1, and also to elude the copper-related inhibition of Ag(I) transport into the cell. All plant MTs expressed in S. cerevisiae conferred Ag(I) tolerance to the yeast cells. Among them, myrGFP-NcMT3 afforded Ag(I) accumulation under high concentration (10⁻50 µM), while myrGFP-AtMT1a conferred increased accumulation capacity under low (1 µM) or even trace Ag(I) (0.02⁻0.05 µM). The ability to tolerate high concentrations of Ag(I) coupled with accumulative characteristics and robust growth showed by some of the transgenic yeasts highlighted the potential of these strains for biotechnology applications.

20.
Food Chem ; 266: 292-298, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30381188

ABSTRACT

Epigallocatechin-3-O-gallate (EGCG), the main green tea component, is intensively studied for its anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer effects. In the present study, a screen on a Saccharomyces cerevisiae gene deletion library was performed to identify conditions under which EGCG had deleterious rather than beneficial effects. Two genes were identified whose deletion resulted in sensitivity to EGCG: FET3 and FTR1, encoding the components of the Fet3/Ftr1 high-affinity iron uptake system, also involved in Cu(I)/Cu(II) balance on the surface of yeast cells. The presence of EGCG in the growth medium induced the production of Cu(I), with deleterious effects on fet3Δ and ftr1Δ cells. Additionally, when combined, physiological surpluses of Cu(II) and EGCG acted in synergy not only against fet3Δ and ftr1Δ, but also against wild type cells, by generating surplus Cu(I) in the growth medium. The results imply that caution should be taken when combining EGCG-rich beverages/nutraceuticals with copper-rich foods.


Subject(s)
Catechin/analogs & derivatives , Ceruloplasmin/genetics , Membrane Transport Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/drug effects , Tea/chemistry , Catechin/chemistry , Catechin/isolation & purification , Catechin/pharmacology , Ceruloplasmin/deficiency , Copper/metabolism , Membrane Transport Proteins/deficiency , Saccharomyces cerevisiae/genetics , Tea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL