Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Inf Model ; 64(17): 6866-6879, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39177258

ABSTRACT

Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) accounts for the catabolism of the endogenous inhibitors of nitric oxide (NO) synthases, namely, ADMA (Nω,Nω-dimethyl-l-arginine) and NMMA (Nω-monomethyl-l-arginine). Inhibition of DDAH-1 may prove a therapeutic benefit in diseases associated with elevated nitric oxide (NO) levels by providing a tissue-specific increase of ADMA and NMMA. In this work, we have used molecular dynamics to generate a pool of DDAH-1 conformations in the apo and holo forms. Ensemble docking has been instrumental in screening an in-house fragment-based library of 824 compounds. Resulting virtual hits have been validated for their binding activity to recombinant human DDAH-1 using microscale thermophoresis (MST). As a key result, three non-amino acidic ligands of DDAH-1 (VIS212, VIS268, VIS726) are identified with higher binding efficiency index than ADMA. Amid these compounds, purpurogallin (VIS726) proves a potent ligand of DDAH-1, showing a mixed behavior of enzymatic inhibition in a biochemical assay. This finding widens the panel of known molecular targets of purpurogallin and provides clues into the molecular mechanisms of its cellular NO inhibition activity as well as its anti-inflammatory and neuroprotective effects.


Subject(s)
Amidohydrolases , Humans , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Biophysical Phenomena , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
2.
Nat Commun ; 14(1): 3392, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296100

ABSTRACT

Dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects against cardiovascular disease by metabolising the risk factor asymmetric dimethylarginine (ADMA). However, the question whether the second DDAH isoform, DDAH2, directly metabolises ADMA has remained unanswered. Consequently, it is still unclear if DDAH2 may be a potential target for ADMA-lowering therapies or if drug development efforts should focus on DDAH2's known physiological functions in mitochondrial fission, angiogenesis, vascular remodelling, insulin secretion, and immune responses. Here, an international consortium of research groups set out to address this question using in silico, in vitro, cell culture, and murine models. The findings uniformly demonstrate that DDAH2 is incapable of metabolising ADMA, thus resolving a 20-year controversy and providing a starting point for the investigation of alternative, ADMA-independent functions of DDAH2.


Subject(s)
Amidohydrolases , Arginine , Mice , Animals , Amidohydrolases/metabolism , Arginine/metabolism , Nitric Oxide/metabolism
3.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982608

ABSTRACT

PD-1/PD-L1 protein complex is attracting a great deal of interest as a drug target for the design of immune therapies able to block its assembly. Although some biologic drugs have entered clinical use, their poor response rate in patients are demanding further efforts to design small molecule inhibitors of PD-1/PD-L1 complex with higher efficacy and optimal physicochemical properties. Dysregulation of pH in the tumor microenvironment is indeed one of the key mechanisms promoting drug resistance and lack of response in cancer therapy. Integrating computational and biophysical approaches, herein we report a screening campaign that has led to identifying VIS310 as a novel ligand of PD-L1, with physicochemical properties enabling a pH-dependent binding potency. Additional optimization efforts by analogue-based screening have been instrumental to disclosing VIS1201, which exhibits improved binding potency against PD-L1 and is able to inhibit PD-1/PD-L1 complex formation in a ligand binding displacement assay. While providing preliminary structure-activity relationships (SARs) of a novel class of PD-L1 ligands, our results lay the foundation for the discovery of immunoregulatory small molecules resilient to tumor microenvironmental conditions for escaping drug-resistance mechanisms.


Subject(s)
B7-H1 Antigen , Tumor Microenvironment , Humans , B7-H1 Antigen/metabolism , Ligands , Programmed Cell Death 1 Receptor/metabolism , Hydrogen-Ion Concentration
4.
Int J Mol Sci ; 23(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35409342

ABSTRACT

Over the last two decades, indoleamine 2,3-dioxygenase 1 (IDO1) has attracted wide interest as a key player in immune regulation, fostering the design and development of small molecule inhibitors to restore immune response in tumor immunity. In this framework, biochemical, structural, and pharmacological studies have unveiled peculiar structural plasticity of IDO1, with different conformations and functional states that are coupled to fine regulation of its catalytic activity and non-enzymic functions. The large plasticity of IDO1 may affect its ligand recognition process, generating bias in structure-based drug design campaigns. In this work, we report a screening campaign of a fragment library of compounds, grounding on the use of three distinct conformations of IDO1 that recapitulate its structural plasticity to some extent. Results are instrumental to discuss tips and pitfalls that, due to the large plasticity of the enzyme, may influence the identification of novel and differentiated chemical scaffolds of IDO1 ligands in structure-based screening campaigns.


Subject(s)
Enzyme Inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Ligands , Molecular Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL