Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Behav Processes ; 216: 105009, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395238

ABSTRACT

Domestic cat (Felis catus) mothers may rely on offspring cries to allocate resources in use of individuals with greater chances for survival and sacrifice the weak ones in case of impossibility to raise the entire large litter. Potential victims of this maternal strategy can enhance their chances of survival, by producing vocalizations with traits mimicking those of higher-quality offspring. We compared acoustic traits of 4990 cries produced during blood sampling by 57 two-week-old captive feral kittens (28 males, 29 females); 47 of them survived to 90 days of age and 10 died by reasons not related to traumas or aggression. No relationship was found between acoustic parameters and kitten survival, however, positive relationship was found between survival and body weight. The cries had moderate cues to individuality and lacked cues to sex. Body weight correlated positively with fundamental frequency and negatively with call rate, duration, peak frequency and power quartiles. We discuss that dishonesty of acoustic traits of kitten quality could develop as adaptation for misleading a mother from allocation resources between the weaker and stronger individuals, thus enhancing individual chances for survival for the weaker littermates. Physical constraint, as body weight, may prevent extensive developing the deceptive vocal traits.


Subject(s)
Mothers , Vocalization, Animal , Humans , Male , Animals , Cats , Female , Child , Aggression , Acoustics , Body Weight
2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396724

ABSTRACT

The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation.


Subject(s)
Chlamydia Infections , Single-Domain Antibodies , Humans , Mice , Animals , Female , Epitopes , Type III Secretion Systems , Chlamydia trachomatis , Antibodies, Bacterial
3.
Front Immunol ; 13: 1022418, 2022.
Article in English | MEDLINE | ID: mdl-36439110

ABSTRACT

The nasal cavity is an important site of allergen entry. Hence, it represents an organ where trans-epithelial allergen penetration and subsequent IgE-mediated allergic inflammation can potentially be inhibited. Intercellular adhesion molecule 1 (ICAM-1) is highly expressed on the surface of respiratory epithelial cells in allergic patients. It was identified as a promising target to immobilize antibody conjugates bispecific for ICAM-1 and allergens and thereby block allergen entry. We have previously characterized a nanobody specific for the major birch pollen allergen Bet v 1 and here we report the generation and characterization of ICAM-1-specific nanobodies. Nanobodies were obtained from a camel immunized with ICAM-1 and a high affinity binder was selected after phage display (Nb44). Nb44 was expressed as recombinant protein containing HA- and His-tags in Escherichia coli (E.coli) and purified via affinity chromatography. SDS-PAGE and Western blot revealed a single band at approximately 20 kDa. Nb44 bound to recombinant ICAM-1 in ELISA, and to ICAM-1 expressed on the human bronchial epithelial cell line 16HBE14o- as determined by flow cytometry. Experiments conducted at 4°C and at 37°C, to mimic physiological conditions, yielded similar percentages (97.2 ± 1.2% and 96.7 ± 1.5% out of total live cells). To confirm and visualize binding, we performed immunofluorescence microscopy. While Texas Red Dextran was rapidly internalized Nb44 remained localized on the cell surface. Additionally, we determined the strength of Nb44 and ICAM-1 interaction using surface plasmon resonance (SPR). Nb44 bound ICAM-1 with high affinity (10-10 M) and had slow off-rates (10-4 s-1). In conclusion, our results showed that the selected ICAM-1-specific nanobody bound ICAM-1 with high affinity and was not internalized. Thus, it could be further used to engineer heterodimers with allergen-specific nanobodies in order to develop topical treatments of pollen allergy.


Subject(s)
Hypersensitivity , Rhinitis, Allergic, Seasonal , Single-Domain Antibodies , Animals , Humans , Intercellular Adhesion Molecule-1 , Allergens , Hypersensitivity/therapy , Camelus
4.
Allergy ; 77(6): 1751-1760, 2022 06.
Article in English | MEDLINE | ID: mdl-34837242

ABSTRACT

BACKGROUND: Recent studies showed that a single injection of human monoclonal allergen-specific IgG antibodies significantly reduced allergic symptoms in birch pollen-allergic patients. Since the production of full monoclonal antibodies in sufficient amounts is laborious and expensive, we sought to investigate if smaller recombinant allergen-specific antibody fragments, that is, nanobodies, have similar protective potential. For this purpose, nanobodies specific for Bet v 1, the major birch pollen allergen, were generated to evaluate their efficacy to inhibit IgE-mediated responses. METHODS: A cDNA-VHH library was constructed from a camel immunized with Bet v 1 and screened for Bet v 1 binders encoding sequences by phage display. Selected nanobodies were expressed, purified, and analyzed in regards of epitope-specificity and affinity to Bet v 1. Furthermore, cross-reactivity to Bet v 1-homologues from alder, hazel and apple, and their usefulness to inhibit IgE binding and allergen-induced basophil activation were investigated. RESULTS: We isolated three nanobodies that recognize Bet v 1 with high affinity and cross-react with Aln g 1 (alder) and Cor a 1 (hazel). Their epitopes were mapped to the alpha-helix at the C-terminus of Bet v 1. All nanobodies inhibited allergic patients' polyclonal IgE binding to Bet v 1, Aln g 1, and Cor a 1 and partially suppressed Bet v 1-induced basophil activation. CONCLUSION: We identified high-affinity Bet v 1-specific nanobodies that recognize an important IgE epitope and reduce allergen-induced basophil activation revealing the first proof that allergen-specific nanobodies are useful tools for future treatment of pollen allergy.


Subject(s)
Hypersensitivity , Single-Domain Antibodies , Allergens , Antigens, Plant , Epitopes , Humans , Immunoglobulin E , Plant Proteins , Pollen
5.
Sci Rep ; 10(1): 6334, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286463

ABSTRACT

The aim of the study was to identify ultradian (intraday) and infradian (multi-day) rhythms in the dynamics of testosterone concentration in the blood serum of white-breasted hedgehogs. Blood sampling was performed from the femoral veins of 12 male hedgehogs. We found ultradian rhythms of testosterone on both sampling dates-March 7-8 (a day length of 11 hours and 15 minutes) and May 10-11 (a day length of 16 hours). An 8-hour rhythm of testosterone concentration has been established. The acrophases were at the same times in both photoperiods and thus independent of sunset times. The study of the infradian rhythms of testosterone was daily carried out on May 22-June 3, at 07:40 to 08:50 and from June 27 to July 7, at 16:15-16:50. It revealed an infradian rhythm of the testosterone concentration with a period of 4-days in both the morning and the evening sampling. According to our previous investigation, the infradian rhythms of testosterone among individual hedgehogs, rodents and primates have the same period. That indicates the common mechanisms for their formation. In case of experimental studies, the phase of ultradian and infradian biorhythms will need to be taken into account because the testosterone concentration in acrophase is 2-4 times higher than in bathyphase.


Subject(s)
Circadian Rhythm , Hedgehogs/metabolism , Testosterone/blood , Animals , Hedgehogs/physiology , Male , Photoperiod
6.
Antiviral Res ; 97(3): 245-54, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23274623

ABSTRACT

This work continues a series of recently published studies that employ recombinant single-domain antibody (sdAb, or nanobody®) generation technologies to battle viruses by a passive immunization approach. As a proof of principle, we describe a modified technique to efficiently generate protective molecules against a particular strain of influenza virus within a reasonably short period of time. This approach starts with the immunization of a camel (Camelus bactrianus) with the specified antigen-enriched material presented in as natural a form as possible. An avian influenza virus A/Mallard/Pennsylvania/10218/84 (H5N2) adapted for mice was used as a model source of antigens for both the immunization and phage display-based selection procedures. To significantly increase activities of initially selected monovalent single-domain antibodies, we propose a new type of sdAb formatting that involves the addition of a special type of coiled-coil sequence, the isoleucine zipper domain (ILZ). Presumably, the ILZ-containing peptides adopt trimeric parallel conformations. After the formatting, the biological activities (virus neutralization) of the initially selected anti-influenza virus (H5N2) sdAbs were significantly increased. Intraperitoneal or intranasal administration of the formatted sdAb at 2h before or 24h after viral challenge specifically protects mice from lethal infection with influenza virus. We hope that the described approach combined with the selection focused on particular conservative epitopes will lead to the generation of sdAb-based molecules protective against a broad spectrum of influenza virus subtypes.


Subject(s)
Antibodies, Viral/immunology , Immunologic Techniques/methods , Influenza A Virus, H5N2 Subtype/physiology , Influenza, Human/prevention & control , Single-Domain Antibodies/immunology , Amino Acid Sequence , Animals , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Camelus/genetics , Camelus/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H5N2 Subtype/drug effects , Influenza A Virus, H5N2 Subtype/genetics , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Protein Structure, Tertiary , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics
7.
Antiviral Res ; 97(3): 318-28, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23274786

ABSTRACT

One effective method for the prevention and treatment of influenza infection is passive immunization. In our study, we examined the feasibility of creating an antibody-based preparation with a prolonged protective effect against influenza virus. Single-domain antibodies (sdAbs) specific for influenza virus hemagglutinin were generated. Experiments in mouse models showed 100% survivability for both intranasal sdAbs administration 24h prior to influenza challenge and 24h after infection. sdAb-gene delivery by an adenoviral vector led to gene expression for up to 14days. Protection by a recombinant adenovirus containing the sdAb gene was observed in cases of administration prior to influenza infection (14d-24h). We also demonstrated that the single administration of a combined preparation containing sdAb DNA and protein expanded the protection time window from 14d prior to 48h after influenza infection. This approach and the application of a broad-spectrum sdAbs will allow the development of efficient drugs for the prevention and treatment of viral infections produced by pandemic virus variants and other infections.


Subject(s)
Antibodies, Viral/genetics , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N2 Subtype/immunology , Influenza, Human/prevention & control , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Cell Line , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Immunization, Passive , Influenza A Virus, H5N2 Subtype/genetics , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL