Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; : 7603-7609, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028946

ABSTRACT

We inspect the origin of the inverted singlet-triplet gap (INVEST) and slow change in the reverse intersystem crossing (rISC) rate with temperature, as recently observed. A Wigner phase space study reveals that, though INVEST is found at equilibrium geometry, variation in the exchange interaction and the doubles-excitation for other geometries in the harmonic region leads to non-INVEST behavior. This highlights the importance of nuclear degrees of freedom for the INVEST phenomenon, and in this case, geometric puckering of the studied molecule determines INVEST and the associated rISC dynamics.

2.
Phys Chem Chem Phys ; 26(6): 5344-5355, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38268441

ABSTRACT

We present an accidental mechanism for efficient intersystem crossing (ISC) between singlet and triplet states with low spin-orbit coupling (SOC) in molecules having donor-acceptor (D-A) moieties separated by a Sigma bond. Our study shows that SOC between the lowest singlet excited state and the higher-lying triplet states, together with nuclear motion-driven coupling of this triplet state with lower-lying triplet states during the free rotation about a Sigma bond, is one of the possible ways to achieve the experimentally observed ISC rate for a class of D-A type photoredox catalysts. This mechanism is found to be the dominant contributor to the ISC process with the corresponding rate reaching a maximum at a dihedral angle in the range of 72°-78° between the D-A moieties of 10-(naphthalen-1-yl)-3,7-diphenyl-10H-phenoxazine and other molecules included in the study. We have further demonstrated that the same mechanism is operative in a specific spirobis[anthracene]dione molecule, where the D and A moieties are interlocked near to the optimal dihedral angle, indicating the plausible effectiveness of the proposed mechanism. The present finding is expected to have implications in strategies for the synthesis of new generations of triplet-harvesting organic molecules.

3.
Phys Chem Chem Phys ; 25(20): 14520-14529, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37190985

ABSTRACT

Cyclic peptides show a wide range of biological activities, among others as antibacterial agents. These peptides are often large and flexible with multiple chiral centers. The determination of the stereochemistry of molecules with multiple chiral centers is a challenging and important task in drug development. Chiroptical spectroscopies such as vibrational circular dichroism (VCD) can distinguish between different stereoisomers. The absolute configuration (AC) of a stereoisomer can be determined by comparing its experimental spectra to computed spectra of stereoisomers with known AC. In this way, the AC of rigid molecules with up to seven chiral centers has been assigned (Bogaerts et al., Phys. Chem. Chem. Phys., 2020, 22, 18014). The question arises whether this is possible with more conformationally flexible molecules such as cyclic peptides. We here investigate to what extent the AC of cyclic peptides can be determined with VCD. More specifically, we investigate the maximum number of chiral centers a cyclic peptide can have in order to be able to unambiguously assign the AC with VCD. We present experimental and computed IR and VCD spectra for a series of eight tetrapeptides and hexapeptides with two, three and four chiral centers. We use our recently developed computational protocol with a conformational search based on sampling with meta-dynamics. We use visual inspection to compare the computed spectra of different stereoisomers with an experimental spectrum of the corresponding cyclic peptide with known AC. We find that the AC of the investigated cyclic peptides with two chiral centers can be unambiguously assigned with VCD. This is however not possible for all of the cyclic peptides with three chiral centers and for none of those with four chiral centers. At best, one can limit the number of possible stereoisomers in those cases. Our work shows that other techniques are needed to assign the AC of cyclic peptides with three or more chiral centers. Our study also constitutes a warning that the spectra of all stereoisomers should be computed before attempting to match to an experimental spectrum, to avoid an accidental erroneous match.


Subject(s)
Peptides, Cyclic , Circular Dichroism , Molecular Conformation , Stereoisomerism
4.
Phys Chem Chem Phys ; 25(11): 8209-8219, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36881024

ABSTRACT

We present a composite framework for calculating the rates of non-radiative deactivation processes, namely internal conversion (IC) and intersystem crossing (ISC), on an equal footing by explicitly computing the non-adiabatic coupling (NAC) and spin-orbit coupling (SOC) constants, respectively. The stationary-state approach uses a time-dependent generating function based on Fermi's golden rule. We validate the applicability of the framework by computing the rate of IC for azulene, obtaining comparable rates to experimental and previous theoretical results. Next, we investigate the photophysics associated with the complex photodynamics of the uracil molecule. Interestingly, our simulated rates corroborate experimental observations. Detailed analyses using Duschinsky rotation matrices, displacement vectors and NAC matrix elements are presented to interpret the findings alongside testing the suitability of the approach for such molecular systems. The suitability of the Fermi's golden rule based method is explained qualitatively in terms of single-mode potential energy surfaces.

5.
J Phys Chem A ; 127(5): 1360-1376, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36722848

ABSTRACT

X-ray absorption spectroscopy (XAS) has gained popularity in recent years as it probes matter with high spatial and elemental sensitivities. However, the theoretical modeling of XAS is a challenging task since XAS spectra feature a fine structure due to scalar (SC) and spin-orbit (SO) relativistic effects, in particular near L and M absorption edges. While full four-component (4c) calculations of XAS are nowadays feasible, there is still interest in developing approximate relativistic methods that enable XAS calculations at the two-component (2c) level while maintaining the accuracy of the parent 4c approach. In this article we present theoretical and numerical insights into two simple yet accurate 2c approaches based on an (extended) atomic mean-field exact two-component Hamiltonian framework, (e)amfX2C, for the calculation of XAS using linear eigenvalue and damped response time-dependent density functional theory (TDDFT). In contrast to the commonly used one-electron X2C (1eX2C) Hamiltonian, both amfX2C and eamfX2C account for the SC and SO two-electron and exchange-correlation picture-change (PC) effects that arise from the X2C transformation. As we demonstrate on L- and M-edge XAS spectra of transition metal and actinide compounds, the absence of PC corrections in the 1eX2C approximation results in a substantial overestimation of SO splittings, whereas (e)amfX2C Hamiltonians reproduce all essential spectral features such as shape, position, and SO splitting of the 4c references in excellent agreement, while offering significant computational savings. Therefore, the (e)amfX2C PC correction models presented here constitute reliable relativistic 2c quantum-chemical approaches for modeling XAS.

6.
J Chem Phys ; 157(17): 174101, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36347675

ABSTRACT

We highlight the important roles the direct spin-orbit (DSO) coupling, the spin-vibronic (SV) coupling, and the dielectric constant of the medium play on the reverse intersystem crossing (RISC) mechanism of TXO-TPA and TXO-PhCz molecules. To understand this complex phenomenon, we have calculated the RISC rate constant, kRISC, using a time-dependent correlation function-based method within the framework of second-order perturbation theory. Our computed kRISC in two different solvents, toluene and chloroform, suggests that in addition to the DSO, a dielectric medium-dependent SV mechanism may also have a significant impact on the net enhancement of the rate of RISC from the lowest triplet state to the first excited singlet state. Whereas we have found that kRISC of TXO-TPA is mostly determined by the DSO contribution independent of the choice of the solvent, the SV mechanism contributes more than 30% to the overall kRISC of TXO-PhCz in chloroform. In toluene, however, the SV mechanism is less important for the RISC process of TXO-PhCz. An analysis of mode-specific nonadiabatic coupling (NAC) between T2 and T1 of TXO-PhCz and TXO-TPA suggests that the NAC values in certain normal modes of TXO-PhCz are much higher than those of TXO-TPA, and it is more pronounced with chloroform as a solvent. The findings demonstrate the role of the solvent-assisted SV mechanism toward the net RISC rate constant, which in turn maximizes the efficiency of thermally activated delayed fluorescence.


Subject(s)
Chloroform , Quantum Theory , Solvents , Fluorescence , Toluene
7.
J Phys Chem A ; 126(39): 7013-7020, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36135807

ABSTRACT

Zero-point vibrational (ZPV) corrections to the nuclear spin-spin coupling constants have been calculated using four-component Dirac-Kohn-Sham DFT for H2X (where X = O, S, Se, Te, Po), XH3 (where X = N, P, As, Sb, Bi), and XH4 (where X = C, Si, Ge, Sn, and Pb) molecules and for HC≡CPbH3. The main goal was to study the influence of relativistic effects on the ZPV corrections and thus results calculated at relativistic and nonrelativistic approaches have been compared. The effects of relativity become notable for the ZPV corrections to the spin-spin coupling constants for compounds with lighter elements (selenium and germanium) than for the spin-spin coupling constants themselves. In the case of molecules containing heavier atoms, for instance BiH3 and PbH4, relativistic effects play a crucial role on the results and approximating ZPV corrections by the nonrelativistic results may lead to larger errors than omitting ZPV corrections altogether.

8.
J Phys Chem A ; 126(32): 5458-5471, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35930395

ABSTRACT

Cyclic peptides are a promising class of compounds for next-generation antibiotics as they may provide new ways of limiting antibiotic resistance development. Although their cyclic structure will introduce some rigidity, their conformational space is large and they usually have multiple chiral centers that give rise to a wide range of possible stereoisomers. Chiroptical spectroscopies such as vibrational circular dichroism (VCD) are used to assign stereochemistry and discriminate enantiomers of chiral molecules, often in combination with electronic structure methods. The reliable determination of the absolute configuration of cyclic peptides will require robust computational methods than can identify all significant conformers and their relative population and reliably assign their stereochemistry from their chiroptical spectra by comparison with ab initio calculated spectra. We here present a computational protocol for the accurate calculation of the VCD spectra of a series of flexible cyclic oligopeptides. The protocol builds on the Conformer-Rotamer Ensemble Sampling Tool (CREST) developed by Grimme and co-workers ( Phys. Chem. Chem. Phys. 2020, 22, 7169-7192 and J. Chem. Theory. Comput. 2019, 15, 2847-2862) in combination with postoptimizations using B3LYP and moderately sized basis sets. Our recommended computational protocol for the computation of VCD spectra of cyclic oligopeptides consists of three steps: (1) conformational sampling with CREST and tight-binding density functional theory (xTB); (2) energy ranking based on single-point energy calculations as well as geometry optimization and VCD calculations of conformers that are within 2.5 kcal/mol of the most stable conformer using B3LYP/6-31+G*/CPCM; and (3) VCD spectra generation based on Boltzmann weighting with Gibbs free energies. Our protocol provides a feasible basis for generating VCD spectra also for larger cyclic peptides of biological/pharmaceutical interest and can thus be used to investigate promising compounds for next-generation antibiotics.


Subject(s)
Oligopeptides , Peptides, Cyclic , Anti-Bacterial Agents , Circular Dichroism , Humans , Molecular Conformation , Stereoisomerism
9.
J Chem Theory Comput ; 18(2): 1046-1060, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35080389

ABSTRACT

We present a benchmark study of density functional approximation (DFA) performances in predicting the two-photon-absorption strengths in π-conjugated molecules containing electron-donating/-accepting moieties. A set of 48 organic molecules is chosen for this purpose, for which the two-photon-absorption (2PA) parameters are evaluated using different DFAs, including BLYP, PBE, B3LYP, PBE0, CAM-B3LYP, LC-BLYP, and optimally tuned LC-BLYP. Minnesota functionals and ωB97X-D are also used, applying the two-state approximation, for a subset of molecules. The efficient resolution-of-identity implementation of the coupled-cluster CC2 model (RI-CC2) is used as a reference for the assessment of the DFAs. Two-state models within the framework of both DFAs and RI-CC2 are used to gain a deeper insight into the performance of different DFAs. Our results give a clear picture of the performance of the density functionals in describing the two-photon activity in dipolar π-conjugated systems. The results show that global hybrids are best suited to reproduce the absolute values of 2PA strengths of donor-acceptor molecules. The range-separated functionals CAM-B3LYP and optimally tuned LC-BLYP, however, show the highest linear correlations with the reference RI-CC2 results. Hence, we recommend the latter DFAs for structure-property studies across large series of dipolar compounds.

10.
Inorg Chem ; 61(2): 830-846, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34958215

ABSTRACT

The simulation of X-ray absorption spectra requires both scalar and spin-orbit (SO) relativistic effects to be taken into account, particularly near L- and M-edges where the SO splitting of core p and d orbitals dominates. Four-component Dirac-Coulomb Hamiltonian-based linear damped response time-dependent density functional theory (4c-DR-TDDFT) calculates spectra directly for a selected frequency region while including the relativistic effects variationally, making the method well suited for X-ray applications. In this work, we show that accurate X-ray absorption spectra near L2,3- and M4,5-edges of closed-shell transition metal and actinide compounds with different central atoms, ligands, and oxidation states can be obtained by means of 4c-DR-TDDFT. While the main absorption lines do not change noticeably with the basis set and geometry, the exchange-correlation functional has a strong influence with hybrid functionals performing the best. The energy shift compared to the experiment is shown to depend linearly on the amount of Hartee-Fock exchange with the optimal value being 60% for spectral regions above 1000 eV, providing relative errors below 0.2% and 2% for edge energies and SO splittings, respectively. Finally, the methodology calibrated in this work is used to reproduce the experimental L2,3-edge X-ray absorption spectra of [RuCl2(DMSO)2(Im)2] and [WCl4(PMePh2)2], and resolve the broad bands into separated lines, allowing an interpretation based on ligand field theory and double point groups. These results support 4c-DR-TDDFT as a reliable method for calculating and analyzing X-ray absorption spectra of chemically interesting systems, advance the accuracy of state-of-the art relativistic DFT approaches, and provide a reference for benchmarking more approximate techniques.

11.
J Phys Chem A ; 125(48): 10315-10320, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34843253

ABSTRACT

We investigate the effect of relativity on harmonic vibrational frequencies. Density functional theory (DFT) calculations using the four-component Dirac-Coulomb Hamiltonian have been performed for 15 hydrides (H2X, X = O, S, Se, Te, Po; XH3, X = N, P, As, Sb, Bi; and XH4, X = C, Si, Ge, Sn, Pb) as well as for HC≡CPbH3. The vibrational frequencies have been calculated using finite differences of the molecular energy with respect to geometrical distortions of the nuclei. The influences of the choice of basis set, exchange-correlation functional, and step length for the numerical differentiation on the calculated harmonic vibrational frequencies have been tested, and the method has been found to be numerically robust. Relativistic effects are noticeable for the heavier congeners H2Te and H2Po, SbH3 and BiH3, and SnH4 and PbH4 and are much more pronounced for the vibrational modes with higher frequencies. Spin-orbit effects constitute a very small fraction of the total relativistic effects, except for H2Te and H2Po. For HC≡CPbH3 we find that only the frequencies of the modes with large contributions from Pb displacements are significantly affected by relativity.

12.
J Phys Chem Lett ; 12(40): 9768-9773, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34595923

ABSTRACT

We demonstrate that spin-vibronic coupling is the most significant mechanism in vibrational coherence transfer (VCT) from the singlet (S1) to the triplet (T1) state of the [Pt2(P2O5H2)4]4- complex. Our time-dependent correlation function-based study shows that the rate of intersystem crossing (kISC) through direct spin-orbit coupling is negligibly small, making VCT vanishingly small due to the ultrashort decoherence time (2.5 ps). However, the inclusion of the spin-vibronic contribution to the net kISC in selective normal modes along the Pt-Pt axis increases the kISC to such an extent that VCT becomes feasible. Our results suggest that kISC for the S1 →T2 (τISC = 1.084 ps) is much faster than the S1 → T1 (τISC = 763.4 ps) and S1 → T3 (τISC = 13.38 ps) in CH3CN solvent, indicating that VCT is possible from the low-lying excited singlet (S1) to the triplet (T1) state through the intermediate T2 state. This is the first example where VCT occurs solely due to spin-vibronic interactions. This finding can pave the way for new types of photocatalysis.

13.
J Chem Theory Comput ; 17(6): 3599-3617, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34009969

ABSTRACT

We present a fully analytic approach to calculate infrared (IR) and Raman spectra of molecules embedded in complex molecular environments modeled using the fragment-based polarizable embedding (PE) model. We provide the theory for the calculation of analytic second-order geometric derivatives of molecular energies and first-order geometric derivatives of electric dipole moments and dipole-dipole polarizabilities within the PE model. The derivatives are implemented using a general open-ended response theory framework, thus allowing for an extension to higher-order derivatives. The embedding-potential parameters used to describe the environment in the PE model are derived through first-principles calculations, thus allowing a wide variety of systems to be modeled, including solvents, proteins, and other large and complex molecular environments. Here, we present proof-of-principle calculations of IR and Raman spectra of acetone in different solvents. This work is an important step toward calculating accurate vibrational spectra of molecules embedded in realistic environments.

14.
Phys Chem Chem Phys ; 23(1): 59-81, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33319894

ABSTRACT

The interpretation of the ultrafast photophysics of transition metal complexes following photo-absorption is quite involved as the heavy metal center leads to a complicated and entangled singlet-triplet manifold. This opens up multiple pathways for deactivation, often with competitive rates. As a result, intersystem crossing (ISC) and phosphorescence are commonly observed in transition metal complexes. A detailed understanding of such an excited-state structure and dynamics calls for state-of-the-art experimental and theoretical methodologies. In this review, we delve into the inability of non-relativistic quantum theory to describe spin-forbidden transitions, which can be overcome by taking into account spin-orbit coupling, whose importance grows with increasing atomic number. We present the quantum chemical theory of phosphorescence and ISC together with illustrative examples. Finally, a few applications are highlighted, bridging the gap between theoretical studies and experimental applications, such as photofunctional materials.

15.
J Chem Phys ; 152(24): 244106, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32610988

ABSTRACT

The properties of molecules depend on their chemical structure, and thus, structure-property relations help design molecules with desired properties. Few-state models are often used to interpret experimental observations of non-linear optical properties. Not only the magnitude but also the relative orientation of the transition dipole moment vectors is needed for few-state models of the non-linear optical properties. The effect of the relative orientation of the transition dipole moment vectors is called dipole alignment, and this effect has previously been studied for multiphoton absorption properties. However, so far, no such studies are reported for the first hyperpolarizability. Here, we present a generalized few-state model for the static and dynamic first hyperpolarizability ß, accounting for the effect of dipole alignment. The formulas derived in this work are general in the sense that they can be used for any few-state model, i.e., a two-state model, a three-state model, or, in general, an n-state model. Based on the formulas, we formulate minimization and maximization criteria for the alignment of transition dipole moment vectors. We demonstrate the importance of dipole alignment by applying the formulas to the static first hyperpolarizability of ortho-, meta-, and para-nitroaniline. The formulas and the analysis provide new ways to understand the structure-property relationship for ß and can hence be used to fine-tune the magnitude of ß in a molecule.

16.
J Chem Phys ; 152(21): 214115, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32505165

ABSTRACT

The Dalton Project provides a uniform platform access to the underlying full-fledged quantum chemistry codes Dalton and LSDalton as well as the PyFraME package for automatized fragmentation and parameterization of complex molecular environments. The platform is written in Python and defines a means for library communication and interaction. Intermediate data such as integrals are exposed to the platform and made accessible to the user in the form of NumPy arrays, and the resulting data are extracted, analyzed, and visualized. Complex computational protocols that may, for instance, arise due to a need for environment fragmentation and configuration-space sampling of biochemical systems are readily assisted by the platform. The platform is designed to host additional software libraries and will serve as a hub for future modular software development efforts in the distributed Dalton community.

17.
J Chem Phys ; 152(18): 184101, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32414255

ABSTRACT

With the increasing interest in compounds containing heavier elements, the experimental and theoretical community requires computationally efficient approaches capable of simultaneous non-perturbative treatment of relativistic, spin-polarization, and electron correlation effects. The ReSpect program has been designed with this goal in mind and developed to perform relativistic density functional theory (DFT) calculations on molecules and solids at the quasirelativistic two-component (X2C Hamiltonian) and fully relativistic four-component (Dirac-Coulomb Hamiltonian) level of theory, including the effects of spin polarization in open-shell systems at the Kramers-unrestricted self-consistent field level. Through efficient algorithms exploiting time-reversal symmetry, biquaternion algebra, and the locality of atom-centered Gaussian-type orbitals, a significant reduction of the methodological complexity and computational cost has been achieved. This article summarizes the essential theoretical and technical advances made in the program, supplemented by example calculations. ReSpect allows molecules with >100 atoms to be efficiently handled at the four-component level of theory on standard central processing unit-based commodity clusters, at computational costs that rarely exceed a factor of 10 when compared to the non-relativistic realm. In addition to the prediction of band structures in solids, ReSpect offers a growing list of molecular spectroscopic parameters that range from electron paramagnetic resonance parameters (g-tensor, A-tensor, and zero-field splitting), via (p)NMR chemical shifts and nuclear spin-spin couplings, to various linear response properties using either conventional or damped-response time-dependent DFT (TDDFT): excitation energies, frequency-dependent polarizabilities, and natural chiroptical properties (electronic circular dichroism and optical rotatory dispersion). In addition, relativistic real-time TDDFT electron dynamics is another unique feature of the program. Documentation, including user manuals and tutorials, is available at the program's website http://www.respectprogram.org.

18.
J Chem Phys ; 151(19): 194112, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31757145

ABSTRACT

We present a detailed theory, implementation, and a benchmark study of a linear damped response time-dependent density functional theory (TDDFT) based on the relativistic four-component (4c) Dirac-Kohn-Sham formalism using the restricted kinetic balance condition for the small-component basis and a noncollinear exchange-correlation kernel. The damped response equations are solved by means of a multifrequency iterative subspace solver utilizing decomposition of the equations according to Hermitian and time-reversal symmetry. This partitioning leads to robust convergence, and the detailed algorithm of the solver for relativistic multicomponent wavefunctions is also presented. The solutions are then used to calculate the linear electric- and magnetic-dipole responses of molecular systems to an electric perturbation, leading to frequency-dependent dipole polarizabilities, electronic absorption, circular dichroism (ECD), and optical rotatory dispersion (ORD) spectra. The methodology has been implemented in the relativistic spectroscopy DFT program ReSpect, and its performance was assessed on a model series of dimethylchalcogeniranes, C4H8X (X = O, S, Se, Te, Po, Lv), and on larger transition metal complexes that had been studied experimentally, [M(phen)3]3+ (M = Fe, Ru, Os). These are the first 4c damped linear response TDDFT calculations of ECD and ORD presented in the literature.

19.
J Phys Chem Lett ; 10(3): 369-374, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30620609

ABSTRACT

We present the novel observation that Duschinsky mixings can lead to the breakdown of Kasha's rule in a white light phosphor molecule, dibenzo[ b, d]thiophen-2-yl (4-chlorophenyl)methanone. Our theoretical analyses show the energy gap between the T1 and T2 states (0.48 eV) is too large to allow for any significant population of the T2 state at room temperature and instead the faster intersystem crossing (ISC) between the S1 and T2 states is rather due to strong Duschinsky mixing, leading to the emission from the T2 state as well. A second-order cumulant-based method has been used for the calculation of the ISC rate, which suggests 2 orders of magnitude faster ISC rates for S1 → T2 compared to those for S1 → T1. We found that the carbonyl moiety of the S1 and T2 states of the molecule is significantly different with respect to bond angle and dihedral angles, engendering large displacements in selective normal modes, thus giving rise to strong Duschinsky mixing.

20.
J Chem Theory Comput ; 15(1): 201-214, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30485092

ABSTRACT

Electron and nuclear magnetic resonance spectroscopies are indispensable and powerful methods for investigating the molecular and electronic structures of open-shell systems. We demonstrate that the NMR and EPR parameters are extremely sensitive quantitative probes for the electronic spin density around heavy-metal atoms and the metal-ligand bonding. Using relativistic density-functional theory, we have analyzed the relation between the spin density and the EPR and NMR parameters in paramagnetic iridium(II/IV) complexes with a PNP pincer ligand. As the magnetic-response parameters for compounds containing 5d transition metal(s) are heavily affected by spin-orbit coupling, relativistic effects must be included in the calculations. We have used a recent implementation of the fully relativistic Dirac-Kohn-Sham (DKS) method employing the hybrid PBE0 functional and an implicit solvent model to calculate EPR parameters and hyperfine NMR shifts. The modulation of the metal-ligand bond by the trans substituent (-Cl or ≡N) and the electronic spin structure around the central metal atom and ligands are shown to be reflected in the "long-range" through-bond Fermi-contact (FC) contributions to the ligand 13C and 1H hyperfine couplings. Interestingly, the hyperfine coupling constant of the ligand atom L ( AL) bonded directly to the iridium center changes its sign because of the dominating role of the paramagnetic spin-orbit (PSO) term. Furthermore, the electronic g-shift and the PSO contribution to the ligand AL are shown to invert their signs when nitrogen is substituted for chlorine, reflecting the different formal metal oxidation states and the change in metal-ligand bond character. A full understanding of the substituent effects is provided by using chemical bond concepts in combination with a molecular-orbital (MO) theory analysis of the second-order perturbation theory expression for the EPR parameters. Our findings are easily transferable to other systems containing d-block elements and beyond. Relativistic DFT calculations of magnetic-resonance parameters are expected to frequently assist in future experimental observations and the characterization of hitherto unknown unstable or exotic species.

SELECTION OF CITATIONS
SEARCH DETAIL