Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.226
Filter
1.
Aust Vet J ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39099130

ABSTRACT

In February 2023, a report of morbidity and mortality in waterbirds triggered a collaborative regional wildlife disease outbreak investigation and response, led by Parks Victoria. Triage, rehabilitation and diagnosis of sick and dead birds were undertaken by Zoos Victoria (ZV), Agriculture Victoria, Vets for Compassion, Wildlife Victoria and Melbourne Veterinary School (MVS). The field response focused on collection of sick and dead birds for wildlife welfare, for diagnosis, and to reduce environmental contamination. Botulism was suspected, based on clinical signs and lack of significant gross pathology, and this diagnosis was confirmed by PCR testing. Low pathogenicity avian influenza (LPAI) viruses non H5 or H7 were detected in two birds and ruled out in all in others tested. These incidental, non-clinical LPAI detections are considered part of the natural wild bird virus community in Australia. A number of elements contributed to the collaborative effort. Regional individuals had the necessary connections for reporting, collecting and transporting birds. There was rapid determination by the Victorian Department of Energy, Environment and Climate Action (DEECA) that Parks Victoria, as the land managers, should lead the response. Zoos Victoria provided capacity and expertise in wildlife triage and rehabilitation, and Agriculture Victoria, ZV and MVS were responsible for veterinary management of the response and diagnosis. Field investigation and response were conducted by Parks Victoria, Agriculture Victoria, MVS and veterinary teams from Vets for Compassion and Wildlife Victoria. Wildlife Health Australia (WHA) provided guidance and information, approved National Significant Disease Investigation Program funding and captured the event in the national wildlife health information database. Communication and media were important for community understanding of the event.

2.
J Soc Cardiovasc Angiogr Interv ; 3(1): 101180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39131988

ABSTRACT

Background: Neurolotic sequelae after transcatheter aortic valve replacement (TAVR) can cause significant morbidity and mortality. Transcranial Doppler (TCD) imaging can show real-time high intensity transient signals (HITS), which reflect active microembolization. Although it is well known that intraprocedural microembolism occurs, it is not known if this embolic phenomenon continues in the postprocedural period. We investigated whether microemboli occur post-TAVR and whether we could determine any clinical, procedural, or echocardiographic predictors. Methods: We evaluated HITS in 51 consecutive patients undergoing unprotected TAVR with low-, intermediate-, or high-risk Society of Thoracic Surgeons score. Patients were excluded if they did not have temporal windows for insonation of the middle cerebral artery or if they were not willing to participate. Primary outcomes of HITS 24 hours post-TAVR were observed using a Philips iU22 TCD. TCD was performed at 3 time points (pre-, peri-, and post-TAVR) for each patient, before, during, and 24 hours postprocedure. Results: While no HITS were detected in any of the patients preoperatively, all patients had HITS during the procedure. Interestingly, 56.8% had HITS 24 hours post-TAVR. One patient with HITS post-TAVR had a stroke 48 hours after TAVR. Conclusion: We observed a high prevalence of microemboli 24 hours post-TAVR. None of the predictors for intraprocedural microembolism seemed to play an important role for post-TAVR microemboli.

3.
Occup Environ Med ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134395

ABSTRACT

OBJECTIVES: Autoimmune disorders are multifactorial but occupational exposures have long been implicated, including respirable crystalline silica (RCS). A modern epidemic of silicosis is emerging internationally, associated with dry processing of engineered stone with high (>90%) RCS content. We aimed to investigate the prevalence of clinical autoimmune disease and common autoantibodies in exposed workers. METHODS: Stone benchtop industry workers in Victoria, Australia were offered free screening for silicosis and related disorders. Symptoms or diagnoses of autoimmune disease were evaluated by questionnaire and blood tests taken for rheumatoid factor (RF), antinuclear antibodies (ANAs) and extractable nuclear antigens (ENAs). RESULTS: Among 1238 workers (93.3% male) screened from 2019 to 2021, 0.9% were confirmed with autoimmune disease. Among those without clinical disease, 24.6% had detectable ANAs (93.5% male), 4.6% detectable ENAs and 2.6% were positive for RF. Silicosis was diagnosed in 253 workers (24.3% of those with diagnostic information available). Of those with ANA readings, 54 (6.6%) had ANA titre >1:320. The likelihood of positive autoantibodies increased with age; smoking; higher exposure to RCS and silicosis diagnosis. CONCLUSION: The proportion of workers with detectable ANAs or ENAs was considerably higher than the 5%-9% expected in the general population. Some of the antibodies detected (eg, Scl-70, CENPB) have high sensitivity and specificity for systemic sclerosis. Long-term follow-up will be needed to estimate incidence. Rheumatologists should explore occupational history in new cases of autoimmune disease. Screening for autoimmune disease is indicated in workers exposed to RCS as these individuals need specialised management and may be entitled to compensation.

4.
J Control Release ; 374: 76-88, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39111598

ABSTRACT

The retinoid fenretinide (FENR) is a promising compound for preventing breast cancer recurrence but faces challenges due to poor solubility and low bioavailability. This study explores the development of dissolving microneedles (MNs) containing FENR-loaded ethosomes for minimally invasive breast cancer chemoprevention, aiming to enhance local drug distribution. Ethosomes were formulated using ethanol, propylene glycol, soya lecithin, water, and polysorbate 80 micelles. MNs were created from poly(vinyl alcohol) and poly(vinylpyrrolidone) hydrogels by adding polymer powder directly into ethosomes suspensions, reducing manufacturing time and cost. Two methods were used to load ethosomes into high-density moulds: 1) only in the needle area, and 2) in both the needle area and baseplate. Dynamic light scattering confirmed nanostructures in the hydrogels and MNs. Micelle-based ethosomes dissolved MNs in 15 min, compared to 30 min for other MNs. Skin deposition studies showed greater drug deposition (up to 10 µg/patch) and enhanced skin permeation of FENR (up to 40 µg) with Method 2. In-vivo studies in rats demonstrated that oral administration resulted in plasma FENR levels below 10 ng/g in the first three hours, whereas MN administration delayed delivery, reaching a maximum plasma concentration of 52 ng/g at 48 h. Skin deposition of FENR from MNs decreased from 3 µg/g on day 1 to <0.3 µg/g by the last day. This study indicates that MNs are a potential minimally invasive dosage form for delivering FENR, offering a new approach for breast cancer chemoprevention.

5.
Nat Commun ; 15(1): 6943, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138161

ABSTRACT

Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and respiration) may be affected by climate change. Using global datasets of prokaryotic abundance, cell carbon and metabolic activity we reveal that mean prokaryotic biomass varies by just under 3-fold across the global surface ocean, while total prokaryotic metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. Under climate change, global prokaryotic biomass in surface waters is projected to decline ~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5% ( ~ 0.85 Pg C yr-1). The rate of prokaryotic biomass decline is one-third that of zooplankton and fish, while the rate of increase in prokaryotic respiration is double. This suggests that future, warmer oceans could be increasingly dominated by prokaryotes, diverting a growing proportion of primary production into microbial food webs and away from higher trophic levels as well as reducing the capacity of the deep ocean to sequester carbon, all else being equal.


Subject(s)
Archaea , Bacteria , Biomass , Climate Change , Heterotrophic Processes , Oceans and Seas , Archaea/metabolism , Bacteria/metabolism , Seawater/microbiology , Food Chain , Animals , Zooplankton/metabolism , Carbon/metabolism , Fishes , Prokaryotic Cells/metabolism
6.
Pharmaceutics ; 16(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39065643

ABSTRACT

Microarray patches (MAPs) offer a noninvasive and patient-friendly drug delivery method, suitable for self-administration, which is especially promising for low- and middle-income country settings. This study focuses on the development of dissolving bilayer MAPs loaded with norelgestromin (NGMN) as a first step towards developing a future potential drug delivery system for sustained hormonal contraception. The fabricated MAPs were designed with the appropriate needle lengths to penetrate the stratum corneum, while remaining minimally stimulating to dermal nociceptors. Ex vivo assessments showed that the MAPs delivered an average of 176 ± 60.9 µg of NGMN per MAP into excised neonatal porcine skin, representing 15.3 ± 5.3% of the loaded drug. In vivo pharmacokinetic analysis in Sprague Dawley rats demonstrated a Tmax of 4 h and a Cmax of 67.4 ± 20.1 ng/mL for the MAP-treated group, compared to a Tmax of 1 h and a Cmax of 700 ± 138 ng/mL for the intramuscular (IM) injection group, with a relative bioavailability of approximately 10% for the MAPs. The MAP-treated rats maintained plasma levels sufficient for therapeutic effects for up to 7 days after a single application. These results indicate the potential of NGMN-loaded dissolving bilayer MAPs, with further development focused on extending the release duration and improving bioavailability for prolonged contraceptive effects.

7.
Eur J Pharm Biopharm ; 202: 114415, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013492

ABSTRACT

Hydrogel-forming microneedle array patches (HFMAPs) are microneedles that create microconduits upon insertion and swelling in the skin, potentially allowing prolonged drug delivery without generating sharps waste. Delivering hydrophobic drugs using HFMAPs poses challenges, which can be addressed using solubility enhancers such as cyclodextrins (CDs). This study aimed to deliver risperidone (RIS) transdermally using HFMAPs. To enhance the aqueous solubility of RIS hydroxypropyl-beta-cyclodextrin (HP-ß-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were utilised and their performance was tested using phase solubility studies. The aqueous solubility of RIS was enhanced by 4.75-fold and 2-fold using HP-ß-CD and HP-γ-CD, respectively. RIS-HP-ß-CD complex (CX) and physical mixture (PM) directly compressed tablets were prepared and combined with HFMAPs. Among the tested formulations, RIS-HP-ß-CD PM reservoirs with 11 x 11 PVA/PVP HFMAPs exhibited the best performance in ex vivo studies and were further evaluated in in vivo experiments using female Sprague Dawley rats. The extended wear time of the MAPs resulted in the sustained release of RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) in plasma samples, lasting from 3 to 5 days with a 1-day application and up to 10 days with a 5-day application. For a 1-day application, HFMAPs showed greater systemic exposure to RIS compared to intramuscular control (AUC0-t: 13330.05 ± 2759.95 ng/mL/hour versus 2706 ± 1472 ng/mL/hour). Moreover, RIS exposure was extended to 5 days (AUC0-t: 12292.37 ± 1801.94 ng/mL/hour). In conclusion, HFMAPs could serve as an alternative for delivering RIS in a sustained manner, potentially improving the treatment of schizophrenia.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Administration, Cutaneous , Drug Delivery Systems , Hydrogels , Risperidone , Solubility , Risperidone/administration & dosage , Risperidone/pharmacokinetics , Risperidone/chemistry , Animals , Hydrogels/chemistry , Drug Delivery Systems/methods , Drug Delivery Systems/instrumentation , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Rats , Needles , Rats, Sprague-Dawley , Skin Absorption , Cyclodextrins/chemistry , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/pharmacokinetics , Female , Skin/metabolism
8.
Proc Natl Acad Sci U S A ; 121(31): e2400953121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042696

ABSTRACT

We show that the globally invasive, human-infectious flatworm, Haplorchis pumilio, possesses the most physically specialized soldier caste yet documented in trematodes. Soldiers occur in colonies infecting the first intermediate host, the freshwater snail Melanoides tuberculata, and are readily distinguishable from immature and mature reproductive worms. Soldiers possess a pharynx five times absolutely larger than those of immature and mature reproductives, lack a germinal mass, and have a different developmental trajectory than reproductives, indicating that H. pumilio soldiers constitute a reproductively sterile physical caste. Neither immature nor mature reproductives showed aggression in in vitro trials, but soldiers readily attacked heterospecific trematodes that coinfect their host. Ecologically, we calculate that H. pumilio caused ~94% of the competitive deaths in the guild of trematodes infecting its host snail in its invasive range in southern California. Despite being a dominant competitor, H. pumilio soldiers did not attack conspecifics from other colonies. All prior reports documenting division of labor and a trematode soldier caste have involved soldiers that may be able to metamorphose to the reproductive stage and have been from nonhuman-infectious marine species; this study provides clear evidence for an obligately sterile trematode soldier, while extending the phenomenon of a trematode soldier caste to freshwater and to an invasive species of global public health concern.


Subject(s)
Snails , Animals , Humans , Snails/parasitology , Trematoda/physiology , Host-Parasite Interactions , Reproduction , Introduced Species , California
9.
Article in English | MEDLINE | ID: mdl-38914008

ABSTRACT

INTRODUCTION: Medication non-adherence is a major contributor to suboptimal disease treatment across medical specialties and is a particular hurdle with topicals. While adherence is a patient behavior affected by many socioeconomic and health system factors, physicians can play an important role in encouraging good adherence. AREAS COVERED: We discuss methods for measuring adherence, including ethics of such research, provide select examples of dermatology-specific adherence studies, and conclude with physician-focused practices to improve patients' adherence. Articles were selected from a PubMed search spanning 2003 to 10 December 2023, using the following terms: 'dermatology,' 'medication,' 'treatment,' 'adherence,' 'compliance,' and 'intervention.' EXPERT OPINION: Poor adherence to treatment is a major cause of poor treatment outcomes. As the goal of medical care is to achieve successful treatment outcomes, encouraging good adherence may be as much a foundation of care as making the right diagnosis and prescribing the right treatment. Taking a doctor-centric perspective on reasons for non-adherence may be more productive than simply finding fault with the patient. Establishing trust and accountability is a foundation for good adherence; after establishing the provider-patient relationship, physicians can improve adherence by incorporating behavioral and counseling strategies, communicating through technology, and advocating for distribution of validated educational information.

10.
J Appl Toxicol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837244

ABSTRACT

Engineered stone-associated silicosis is characterised by a rapid progression of fibrosis linked to a shorter duration of exposure. To date, there is lack of information about molecular pathways that regulates disease development and the aggressiveness of this form of silicosis. Therefore, we compared transcriptome responses to different engineered stone samples and standard silica. We then identified and further tested a stone dust specific pathway (aryl hydrocarbon receptor [AhR]) in relation to mitigation of adverse lung cell responses. Cells (epithelial cells, A549; macrophages, THP-1) were exposed to two different benchtop stone samples, standard silica and vehicle control, followed by RNA sequencing analysis. Bioinformatics analyses were conducted, and the expression of dysregulated AhR pathway genes resulting from engineered stone exposure was then correlated with cytokine responses. Finally, we inhibited AhR pathway in cells pretreated with AhR antagonist and observed how this impacted cell cytotoxicity and inflammation. Through transcriptome analysis, we identified the AhR pathway genes (CYP1A1, CYP1B1 and TIPARP) that showed differential expression that was unique to engineered stones and common between both cell types. The expression of these genes was positively correlated with interleukin-8 production in A549 and THP-1 cells. However, we only observed a mild effect of AhR pathway inhibition on engineered stone dust induced cytokine responses. Given the dual roles of AhR pathway in physiological and pathological processes, our data showed that expression of AhR target genes could be markers for assessing toxicity of engineered stones; however, AhR pathway might not play a significant pathologic role in engineered stone-associated silicosis.

11.
Biology (Basel) ; 13(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927304

ABSTRACT

Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.1 K27 altered, or diffuse hemispheric gliomas (DHG) (H3.3 G34-mutant). Due to diffuse tumor infiltration of eloquent brain areas, especially for DMG, surgery has often been limited and chemotherapy has not been effective, leaving fractionated radiation to the involved field as the current standard of care. pHGG has only been classified as molecularly distinct from adult HGG since 2012 through Next-Generation sequencing approaches, which have shown pHGG to be epigenetically regulated and specific tumor sub-types to be representative of dysregulated differentiating cells. To translate discovery research into novel therapies, improved pre-clinical models that more adequately represent the tumor biology of pHGG are required. This review will summarize the molecular characteristics of different pHGG sub-types, with a specific focus on histone K27M mutations and the dysregulated gene expression profiles arising from these mutations. Current and emerging pre-clinical models for pHGG will be discussed, including commonly used patient-derived cell lines and in vivo modeling techniques, encompassing patient-derived xenograft murine models and genetically engineered mouse models (GEMMs). Lastly, emerging techniques to model CNS tumors within a human brain environment using brain organoids through co-culture will be explored. As models that more reliably represent pHGG continue to be developed, targetable biological and genetic vulnerabilities in the disease will be more rapidly identified, leading to better treatments and improved clinical outcomes.

12.
Int J Pharm ; 660: 124317, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38851410

ABSTRACT

Human immunodeficiency virus (HIV) continues to pose a serious threat to global health. Oral preexposure prophylaxis (PrEP), considered highly effective for HIV prevention, is the utilisation of antiretroviral (ARV) drugs before HIV exposure in high-risk uninfected individuals. However, ARV drugs are associated with poor patient compliance and pill fatigue due to their daily oral dosing. Therefore, an alternative strategy for drug delivery is required. In this work, two dissolving microneedle patches (MNs) containing either bictegravir (BIC) or tenofovir alafenamide (TAF) solid drug nanoparticles (SDNs) were developed for systemic delivery of a novel ARV regimen for potential HIV prevention. According to ex vivo skin deposition studies, approximately 11% and 50% of BIC and TAF was delivered using dissolving MNs, respectively. Pharmacokinetic studies in Sprague Dawley rats demonstrated that BIC MNs achieved a long-acting release profile, maintaining the relative plasma concentration above the 95% inhibitory concentration (IC95) for 3 weeks. For TAF MNs, a rapid release of drug and metabolism of TAF into TFV were obtained from the plasma samples. This work has shown that the proposed transdermal drug delivery platform could be potentially used as an alternative method to systemically deliver ARV drugs for HIV PrEP.


Subject(s)
Administration, Cutaneous , Alanine , Anti-HIV Agents , HIV Infections , Needles , Pre-Exposure Prophylaxis , Rats, Sprague-Dawley , Tenofovir , Animals , Tenofovir/administration & dosage , Tenofovir/pharmacokinetics , Tenofovir/analogs & derivatives , Alanine/pharmacokinetics , Alanine/administration & dosage , Alanine/chemistry , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Pre-Exposure Prophylaxis/methods , HIV Infections/prevention & control , Male , Adenine/administration & dosage , Adenine/pharmacokinetics , Adenine/analogs & derivatives , Adenine/chemistry , Rats , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Drug Liberation , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/chemistry , Pyridones/administration & dosage , Pyridones/pharmacokinetics , Drug Delivery Systems , Piperazines/pharmacokinetics , Piperazines/administration & dosage , Piperazines/chemistry , Cyclopropanes/administration & dosage , Cyclopropanes/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/administration & dosage , Amides/administration & dosage , Amides/pharmacokinetics , Amides/chemistry
13.
Int J Pharm ; 660: 124342, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38880253

ABSTRACT

Schizophrenia is a psychiatric disorder that results from abnormal levels of neurotransmitters in the brain. Risperidone (RIS) is a common drug prescribed for the treatment of schizophrenia. RIS is a hydrophobic drug that is typically administered orally or intramuscularly. Transdermal drug delivery (TDD) could potentially improve the delivery of RIS. This study focused on the development of RIS nanocrystals (NCs), for the first time, which were incorporated into dissolving microneedle array patches (DMAPs) to facilitate the drug delivery of RIS. RIS NCs were formulated via wet-media milling technique using poly(vinylalcohol) (PVA) as a stabiliser. NCs with particle size of 300 nm were produced and showed an enhanced release profile up to 80 % over 28 days. Ex vivo results showed that 1.16 ± 0.04 mg of RIS was delivered to both the receiver compartment and full-thickness skin from NCs loaded DMAPs compared to 0.75 ± 0.07 mg from bulk RIS DMAPs. In an in vivo study conducted using female Sprague Dawley rats, both RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) were detected in plasma samples for 5 days. In comparison with the oral group, DMAPs improved the overall pharmacokinetic profile in plasma with a âˆ¼ 15 folds higher area under the curve (AUC) value. This work has represented the novel delivery of the antipsychotic drug, RIS, through microneedles. It also offers substantial evidence to support the broader application of MAPs for the transdermal delivery of poorly water-soluble drugs.


Subject(s)
Administration, Cutaneous , Antipsychotic Agents , Rats, Sprague-Dawley , Risperidone , Schizophrenia , Animals , Risperidone/administration & dosage , Risperidone/pharmacokinetics , Schizophrenia/drug therapy , Female , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/pharmacokinetics , Transdermal Patch , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Drug Liberation , Skin Absorption , Rats , Drug Delivery Systems , Skin/metabolism , Polyvinyl Alcohol/chemistry , Paliperidone Palmitate/administration & dosage , Paliperidone Palmitate/pharmacokinetics , Particle Size , Solubility , Needles
14.
Int J Pharm ; 660: 124347, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38885777

ABSTRACT

Ropivacaine hydrochloride (RPL) is a local anesthetic agent that has been widely used for the treatment of pain during or after surgery. However, this drug is only available in parenteral dosage form and may contribute to the infiltration of RPL into the plasma, causing some undesirable side effects. Intradermal delivery of RPL using dissolving microneedles may become a promising strategy to deliver such drugs into the skin. This research aimed to develop RPL-loaded dissolving microneedles (DMN-RPLs) as a proof of the concept of intradermal delivery of a local anesthetic. The DMN-RPLs were fabricated using either centrifugation or air-pressurized chamber methods. Several polymers, such as poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and sodium hyaluronate (SH), were utilized for manufacturing the DMN-RPLs. The prepared DMN-RPLs were assessed for their thermal properties, chemical bonds, mechanical strength, insertion ability, skin-dissolution study, and drug content. Furthermore, in-skin deposition and dermatokinetic studies were also performed. The results showed that F9 (30 % w/w PVP-4 % w/w SH) and F10 (30 % w/w PVP-5 % w/w PVA) containing 5 % w/w of RPL were the most promising formulations, as shown by their needle height reduction (<10 %) and insertion depth (∼400 µm). Both formulations were also able to deliver more than 60 % of the RPL contained in the DMNs into the epidermis, dermis, and receiver compartment. This study, for the first time, has provided a proof concept to deliver RPL as a local anesthetic using DMNs and the intradermal route, aiming to minimize pain and discomfort during administration and improve the patient's experience.


Subject(s)
Anesthetics, Local , Drug Delivery Systems , Needles , Ropivacaine , Skin , Ropivacaine/administration & dosage , Ropivacaine/pharmacokinetics , Anesthetics, Local/administration & dosage , Anesthetics, Local/pharmacokinetics , Anesthetics, Local/chemistry , Animals , Skin/metabolism , Administration, Cutaneous , Drug Liberation , Skin Absorption , Povidone/chemistry , Proof of Concept Study , Solubility , Hyaluronic Acid/chemistry , Hyaluronic Acid/administration & dosage , Microinjections/methods , Male , Rats, Sprague-Dawley , Polyvinyl Alcohol/chemistry
15.
J Control Release ; 372: 304-317, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906420

ABSTRACT

Parkinson's disease (PD), affecting about ten million people globally, presents a significant health challenge. Rotigotine (RTG), a dopamine agonist, is currently administered as a transdermal patch (Neupro®) for PD treatment, but the daily application can be burdensome and cause skin irritation. This study introduces a combinatorial approach of dissolving microarray patch (MAP) and nanosuspension (NS) for the transdermal delivery of RTG, offering an alternative to Neupro®. The RTG-NS was formulated using a miniaturized media milling method, resulting in a nano-formulation with a mean particle size of 274.09 ± 7.43 nm, a PDI of 0.17 ± 0.04 and a zeta potential of -15.24 ± 2.86 mV. The in vitro dissolution study revealed an enhanced dissolution rate of the RTG-NS in comparison to the coarse RTG powder, under sink condition. The RTG-NS MAPs, containing a drug layer and a 'drug-free' supporting baseplate, have a drug content of 3.06 ± 0.15 mg/0.5 cm2 and demonstrated greater amount of drug delivered per unit area (∼0.52 mg/0.5 cm2) than Neupro® (∼0.20 mg/1 cm2) in an ex vivo Franz cell study using full-thickness neonatal porcine skin. The in vivo pharmacokinetic studies demonstrated that RTG-NS MAPs, though smaller (2 cm2 for dissolving MAPs and 6 cm2 for Neupro®), delivered drug levels comparable to Neupro®, indicating higher efficiency per unit area. This could potentially avoid unnecessarily high plasma levels after the next dose at 24 h, highlighting the benefits of dissolving MAPs over conventional transdermal patches in PD treatment.


Subject(s)
Administration, Cutaneous , Dopamine Agonists , Nanoparticles , Skin Absorption , Tetrahydronaphthalenes , Thiophenes , Transdermal Patch , Animals , Thiophenes/administration & dosage , Thiophenes/pharmacokinetics , Thiophenes/chemistry , Tetrahydronaphthalenes/administration & dosage , Tetrahydronaphthalenes/pharmacokinetics , Tetrahydronaphthalenes/chemistry , Dopamine Agonists/administration & dosage , Dopamine Agonists/pharmacokinetics , Dopamine Agonists/chemistry , Nanoparticles/chemistry , Swine , Suspensions , Skin/metabolism , Drug Liberation , Male , Solubility , Particle Size
16.
Diagn Microbiol Infect Dis ; 110(1): 116369, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38909427

ABSTRACT

A 32-year-old contact lens-wearing man with recent travel history to the Caribbean was referred for a corneal infiltrate in the left eye that worsened following 1-week of steroid-antibiotic therapy. Corneal cultures were obtained and sent to our facility's clinical microbiology laboratory for analysis. Same-day in vivo confocal microscopy revealed fungal elements. Nucleic acid sequencing performed on the isolated determined it to be a member of the entomopathogenic genus Metarhizium. Over the course of 3 months, the patient's corneal infiltrate ultimately resolved following topical natamycin 5 % therapy. This is the first reported case to have originated in the Caribbean and to utilize in vivo confocal microscopy to aid diagnosis. Our case also supports previous reports of success with natamycin therapy in treatment of Metarhizium sp. keratitis.


Subject(s)
Antifungal Agents , Keratitis , Metarhizium , Microscopy, Confocal , Natamycin , Humans , Natamycin/therapeutic use , Natamycin/administration & dosage , Male , Metarhizium/genetics , Metarhizium/isolation & purification , Adult , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/diagnosis , Antifungal Agents/therapeutic use , Caribbean Region , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/diagnosis , Treatment Outcome , Administration, Topical , Cornea/microbiology , Cornea/pathology
17.
J Occup Environ Hyg ; 21(7): 504-514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924715

ABSTRACT

Ideally, measuring exposures to volatile organic compounds should allow for modifying sampling duration without loss in sensitivity. Traditional sorbent-based sampling can vary sampling duration, but sensitivity may be affected when capturing shorter tasks. Diaphragm and capillary flow controllers allow for a range of flow rates and sampling durations for air sampling with evacuated canisters. The goal of this study was to evaluate the extent to which commercialized capillary flow controllers satisfy the bias (±10%) and accuracy (±25%) criteria for air sampling methods as established by the National Institute for Occupational Safety and Health (NIOSH) using the framework of ASTM D6246 Standard Practice for Evaluating the Performance of Diffusive Samplers to compare their performance with diaphragm flow controllers in a long-term field study. Phase 1 consisted of a series of laboratory tests to evaluate capillary flow controller flow rates with respect to variations in temperature (-15-24 °C). The results demonstrated a slight increase in flow rate with lower temperatures. In Phase 2, the capillary flow controller was evaluated utilizing a matrix of parameters, including time-weighted average concentration, peak concentration (50-100× base concentration), air velocity across the sampler inlet (0.41-0.5 m/s), relative humidity (20-80%), and temperature (10-32 °C). Comparison of challenge concentrations with reference concentrations revealed the aggregate bias and overall accuracy for four tested compounds to be within the range of criteria for both NIOSH and ASTM standards. Additionally, capillary flow controllers displayed lower variability in flow rate and measured concentration (RSD: 2.4% and 4.3%, respectively) when compared with diaphragm flow controllers (RSD: 6.9% and 7.2%, respectively) for 24-hr laboratory tests. Phase 3 involved further testing of flow rate variability for both diaphragm and capillary flow controllers in a field study. The capillary flow controller displayed a lower level of variability (RSD: 5.2%) than the diaphragm flow controller (RSD: 8.0%) with respect to flow rate, while allowing for longer durations of sampling.


Subject(s)
Air Pollutants, Occupational , Environmental Monitoring , Occupational Exposure , Volatile Organic Compounds , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Occupational Exposure/analysis , Volatile Organic Compounds/analysis , Air Pollutants, Occupational/analysis , National Institute for Occupational Safety and Health, U.S. , Temperature , Humans , United States
18.
Article in English | MEDLINE | ID: mdl-38722459

ABSTRACT

Quercetin, a natural compound, shows promising potential in wound healing by reducing fibrosis, limiting scar formation, and boosting fibroblast proliferation. However, its effectiveness is hindered by poor solubility, resulting in low bioavailability and necessitating high doses for therapeutic efficacy. This study presents a novel approach, fabricating quercetin-loaded microarray patches (MAPs) using widely employed solubility enhancement strategies. Fabricated MAPs exhibited favourable mechanical strength and could be inserted into excised porcine skin to a depth of 650 µm. Furthermore, formulations containing Soluplus® significantly increased the drug loading capacity, achieving up to 2.5 mg per patch and complete dissolution within an hour of application on excised porcine skin. In vitro studies on full-thickness neonatal porcine skin demonstrated that Soluplus®-enhanced MAPs effectively delivered quercetin across various skin layers, achieving a delivery efficiency exceeding 80% over 24 h. Additionally, these prototype MAPs displayed anti-inflammatory properties and demonstrated biocompatibility with human keratinocyte skin cells. Therefore, quercetin-loaded MAPs employing Soluplus® as a solubility enhancer present a promising alternative strategy for wound healing and anti-inflammatory therapy applications.

19.
Pharmaceutics ; 16(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794339

ABSTRACT

Levodopa (LD) has been the most efficacious medication and the gold standard therapy for Parkinson's disease (PD) for decades. However, its long-term administration is usually associated with motor complications, which are believed to be the result of the fluctuating pharmacokinetics of LD following oral administration. Duodopa® is the current option to offer a continuous delivery of LD and its decarboxylase inhibitor carbidopa (CD); however, its administration involves invasive surgical procedures, which could potentially lead to lifelong complications, such as infection. Recently, dissolving microarray patches (MAPs) have come to the fore as an alternative that can bypass the oral administration route in a minimally invasive way. This work explored the potential of using dissolving MAPs to deliver LD and CD across the skin. An acidic polymer poly(acrylic acid) (PAA) was used in the MAP fabrication to prevent the potential oxidation of LD at neutral pH. The drug contents of LD and CD in the formulated dissolving MAPs were 1.82 ± 0.24 and 0.47 ± 0.04 mg/patch, respectively. The in vivo pharmacokinetic study using female Sprague-Dawley® rats (Envigo RMS Holding Corp, Bicester, UK) demonstrated a simultaneous delivery of LD and CD and comparable AUC values between the dissolving MAPs and the oral LD/CD suspension. The relative bioavailability for the dissolving MAPs was calculated to be approximately 37.22%. Accordingly, this work highlights the use of dissolving MAPs as a minimally invasive approach which could potentially bypass the gastrointestinal pathway and deliver both drugs continuously without surgery.

20.
Clin Exp Dermatol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747172

ABSTRACT

Acne vulgaris (AV) is the eighth most common non-fatal disease globally. Previous work identified an association between AV and increased Filaggrin (FLG) expression in the follicular epidermis, but further work did not find a clear link between loss of function (LoF) Filaggrin gene (FLG) mutations and protection from AV. In this work we aimed to explore any association between AV and FLG LoF mutations using a cohort of genotyped Bangladeshi patients with atopic eczema (AE) in East London. Retrospective notes review was performed on 245 patients who had been genotyped for FLG LoF mutations and undergone clinical assessment. The Chi squared or Fisher's exact test was used to determine differences between groups. We found a significant reduction in history of AV in AE patients with FLG LoF mutations relative to AE patients without FLG mutations (p = 0.02). We showed a non-significant reduction in AV diagnosis in patients with impaired barrier function (measured by trans epidermal water loss) and palmar hyperlinearity. We found that patients with severe AE were less likely to have a history of AV only if they had an existing FLG LoF mutation (p = 0.02). In the context of AE, our work suggests that FLG LoF mutations protect patients from developing AV.

SELECTION OF CITATIONS
SEARCH DETAIL