Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Osteopath Med ; 123(1): 39-47, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35977624

ABSTRACT

CONTEXT: Rapid influenza diagnostic tests (RIDTs) are becoming increasingly accurate, available, and reliable as the first line of testing when suspecting influenza infections, although the global burden of influenza infections remains high. Rapid diagnosis of influenza infections has been shown to reduce improper or delayed treatment and to increase access to diagnostic measures in public health, primary care, and hospital-based settings. OBJECTIVES: As the use of RIDTs continues to expand in all healthcare settings, there is a multitude of molecular techniques being employed by these various testing platforms. With this in mind, we compare the sensitivity, specificity, and time to diagnosis for nine highly utilized commercial RIDTs. METHODS: Nine commercially available RIDTs were identified from the US Centers for Disease Control and Prevention (CDC) website, which were also referenced on PubMed by name within the title or abstract of peer-reviewed publications examining the sensitivity and specificity of each test against a minimum of three influenza A virus (IAV) strains as well as seasonal influenza B virus (IBV). Data from the peer-reviewed publications and manufacturers' websites were combined to discuss the sensitivity, specify, and time to diagnosis associated with each RIDT. RESULTS: The sensitivity and specificity across the examined RIDTs were greater than 85.0% for both IAV and IBV across all platforms, with the reverse transcriptase-polymerase chain reaction (RT-PCR) assays maintaining sensitivity and specificity greater than 95.0% for all viruses tested. However, the RT-PCR platforms were the longest in time to diagnosis when compared to the other molecular methods utilized in the examined RIDTs. CONCLUSIONS: Herein, we discussed the benefits and limitations of nine commercially available RIDTs and the molecular techniques upon which they are based, showing the relative accuracy and speed of each test for IAV and IBV detection as reported by the peer-reviewed literature and commercial manufacturers.


Subject(s)
Influenza, Human , Humans , Influenza, Human/diagnosis , Point-of-Care Systems , Diagnostic Tests, Routine/methods , Diagnostic Techniques and Procedures , Sensitivity and Specificity
2.
Bio Protoc ; 12(5): e4349, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35592597

ABSTRACT

The impact of viral diseases on human health is becoming increasingly prevalent globally with the burden of disease being shared between resource-rich and poor areas. As seen in the global pandemic caused by SARS-CoV-2, there is a need to establish viral detection techniques applicable to resource-limited areas that provide sensitive and specific testing with a logistically conscious mindset. Herein, we describe a direct-to-PCR technology utilizing mechanical homogenization prior to viral PCR detection, which allows the user to bypass traditional RNA extraction techniques for accurate detection of human coronavirus. This methodology was validated in vitro, utilizing human coronavirus 229E (HCoV-229E), and then clinically, utilizing patient samples to test for SARS-CoV-2 infection. In this manuscript, we describe in detail the protocol utilized to determine the limit of detection for this methodology with in vitro testing of HCoV-229E.

3.
PLoS One ; 16(8): e0256316, 2021.
Article in English | MEDLINE | ID: mdl-34407126

ABSTRACT

Efficient and effective viral detection methodologies are a critical piece in the global response to COVID-19, with PCR-based nasopharyngeal and oropharyngeal swab testing serving as the current gold standard. With over 100 million confirmed cases globally, the supply chains supporting these PCR testing efforts are under a tremendous amount of stress, driving the need for innovative and accurate diagnostic solutions. Herein, the utility of a direct-to-PCR method of SARS-CoV-2 detection grounded in mechanical homogenization is examined for reducing resources needed for testing while maintaining a comparable sensitivity to the current gold standard workflow of nasopharyngeal and oropharyngeal swab testing. In a head-to-head comparison of 30 patient samples, this initial clinical validation study of the proposed homogenization-based workflow demonstrated significant agreeability with the current extraction-based method utilized while cutting the total resources needed in half.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Specimen Handling/instrumentation , COVID-19 Nucleic Acid Testing/instrumentation , Feasibility Studies , Humans , Nasopharynx/virology , Oropharynx/virology , Prospective Studies , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , Workflow
4.
Blood Adv ; 5(2): 414-431, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33496739

ABSTRACT

Accurate and consistent sequence variant interpretation is critical to the correct diagnosis and appropriate clinical management and counseling of patients with inherited genetic disorders. To minimize discrepancies in variant curation and classification among different clinical laboratories, the American College of Medical Genetics and Genomics (ACMG), along with the Association for Molecular Pathology (AMP), published standards and guidelines for the interpretation of sequence variants in 2015. Because the rules are not universally applicable to different genes or disorders, the Clinical Genome Resource (ClinGen) Platelet Disorder Expert Panel (PD-EP) has been tasked to make ACMG/AMP rule specifications for inherited platelet disorders. ITGA2B and ITGB3, the genes underlying autosomal recessive Glanzmann thrombasthenia (GT), were selected as the pilot genes for specification. Eight types of evidence covering clinical phenotype, functional data, and computational/population data were evaluated in the context of GT by the ClinGen PD-EP. The preliminary specifications were validated with 70 pilot ITGA2B/ITGB3 variants and further refined. In the final adapted criteria, gene- or disease-based specifications were made to 16 rules, including 7 with adjustable strength; no modification was made to 5 rules; and 7 rules were deemed not applicable to GT. Employing the GT-specific ACMG/AMP criteria to the pilot variants resulted in a reduction of variants classified with unknown significance from 29% to 20%. The overall concordance with the initial expert assertions was 71%. These adapted criteria will serve as guidelines for GT-related variant interpretation to increase specificity and consistency across laboratories and allow for better clinical integration of genetic knowledge into patient care.


Subject(s)
Genetic Testing , Genome, Human , Genetic Variation , Genomics , Humans , Integrin alpha2/genetics , Integrin beta3/genetics , Phenotype , United States
5.
Virol J ; 17(1): 129, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32843049

ABSTRACT

BACKGROUND: Currently, one of the most reliable methods for viral infection detection are polymerase chain reaction (PCR) based assays. This process is time and resource heavy, requiring multiple steps of lysis, extraction, purification, and amplification procedures. Herein, we have developed a method to detect virus off swabs using solely shaker-mill based mechanical lysis and the transfer of the viral lysate directly to a PCR assay for virus detection, bypassing the substantial reagent and time investments required for extraction and purification steps. METHODS: Using Human Coronavirus 229E (HCoV-229E) as a model system, we spiked swabs in vitro for proof-of-concept testing. Swabs were spiked in serial dilutions from 1.2 × 106 to 1.2 × 101 copies/mL and then placed in 2 mL tubes with viral transport media (VTM) to mimic the specimen collection procedures in the clinic prior to processing via shaker-mill homogenization. After homogenization, 1 µL of lysate was processed using RT-qPCR for amplification of the nucleocapsid (N) gene, qualifying viral detection. RESULTS: HCoV-229E in vitro spiked swabs were processed in a novel two-step, direct-to-PCR methodology for viral detection. After running 54 swabs, we confidently determined our limit of detection to be 1.2 × 103 viral copies/mL with 96.30% sensitivity. CONCLUSION: We have proven that the shaker-mill homogenization-based two-step, direct-to-PCR procedures provides sufficient viral lysis off swabs, where the resulting lysate can be used directly in PCR for the detection of HCoV-229E. This finding allows for reductions in the time and resources required for PCR based virus detection in comparison to the traditional extraction-to-PCR methodology.


Subject(s)
Coronavirus 229E, Human/genetics , Coronavirus Infections/diagnosis , Polymerase Chain Reaction/methods , Cell Line , Coronavirus 229E, Human/isolation & purification , Humans
6.
Blood Adv ; 3(20): 2962-2979, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31648317

ABSTRACT

Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies. The MM-VCEP began optimizing ACMG/AMP rules for RUNX1 because many germline variants have been described in patients with familial platelet disorder with a predisposition to acute myeloid leukemia, characterized by thrombocytopenia, platelet functional/ultrastructural defects, and a predisposition to hematologic malignancies. The 28 ACMG/AMP codes were tailored for RUNX1 variants by modifying gene/disease specifications, incorporating strength adjustments of existing rules, or both. Key specifications included calculation of minor allele frequency thresholds, formulating a semi-quantitative approach to counting multiple independent variant occurrences, identifying functional domains and mutational hotspots, establishing functional assay thresholds, and characterizing phenotype-specific guidelines. Preliminary rules were tested by using a pilot set of 52 variants; among these, 50 were previously classified as benign/likely benign, pathogenic/likely pathogenic, variant of unknown significance (VUS), or conflicting interpretations (CONF) in ClinVar. The application of RUNX1-specific criteria resulted in a reduction in CONF and VUS variants by 33%, emphasizing the benefit of gene-specific criteria and sharing internal laboratory data.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Genetic Variation , Germ-Line Mutation , Leukemia, Myeloid/diagnosis , Leukemia, Myeloid/genetics , Clinical Decision-Making , Disease Management , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Genomics/methods , Humans , Phenotype , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...