Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mycologia ; 107(4): 667-78, 2015.
Article in English | MEDLINE | ID: mdl-25977213

ABSTRACT

Periglandula ipomoeae and P. turbinae (Ascomycota, Clavicipitaceae) are recently described fungi that form symbiotic associations with the morning glories (Convolvulaceae) Ipomoea asarifolia and Turbina corymbosa, respectively. These Periglandula species are vertically transmitted and produce bioactive ergot alkaloids in seeds of infected plants and ephemeral mycelia on the adaxial surface of young leaves. Whether other morning glories that contain ergot alkaloids also are infected by Periglandula fungi is a central question. Here we report on a survey of eight species of Convolvulaceae (Argyreia nervosa, I. amnicola, I. argillicola, I. gracilis, I. hildebrandtii, I. leptophylla, I. muelleri, I. pes-caprae) for ergot alkaloids in seeds and associated clavicipitaceous fungi potentially responsible for their production. All host species contained ergot alkaloids in four distinct chemotypes with concentrations of 15.8-3223.0 µg/g. Each chemotype was a combination of four or five ergot alkaloids out of seven alkaloids detected across all hosts. In addition, each host species exhibited characteristic epiphytic mycelia on adaxial surfaces of young leaves with considerable interspecific differences in mycelial density. We sequenced three loci from fungi infecting each host: the nuclear rDNA internal transcribed spacer region (ITS), introns of the translation factor 1-α gene (tefA) and the dimethylallyl-tryptophan synthase gene (dmaW), which codes for the enzyme that catalyzes the first step in ergot alkaloid biosynthesis. Phylogenetic analyses confirmed that these fungi are in the family Clavicipitaceae and form a monophyletic group with the two described Periglandula species. This study is the first to report Periglandula spp. from Asian, Australian, African and North American species of Convolvulaceae, including host species with a shrub growth form and host species occurring outside of the tropics. This study demonstrates that ergot alkaloids in morning glories always co-occur with Periglandula spp. and that closely related Periglandula spp. produce alkaloid chemotypes more similar than more distantly related species.


Subject(s)
Convolvulaceae/microbiology , Hypocreales/chemistry , Hypocreales/genetics , Phylogeny , Convolvulaceae/classification , Ergot Alkaloids/chemistry , Ergot Alkaloids/metabolism , Hypocreales/classification , Hypocreales/physiology , Molecular Sequence Data , Plant Leaves/microbiology , Symbiosis
2.
J Agric Food Chem ; 63(1): 61-7, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25491167

ABSTRACT

Ergot alkaloid pathway reconstruction in Aspergillus nidulans is an approach used to better understand the biosynthesis of these mycotoxins. An engineered strain named A. nidulans WFC (expressing ergot alkaloid synthesis genes dmaW, easF, and easC) produced the established intermediate N-methyl-4-dimethylallyltryptophan, as well as an uncharacterized ergot alkaloid. We investigated the chemical structure of the new metabolite and its role in the ergot alkaloid pathway. Mass spectrometry, labeling, and NMR studies showed that the unknown ergot alkaloid, designated here as ergotryptamine, differed from N-methyl-4-dimethylallyltryptophan by the loss of the carboxyl group, addition of a hydroxyl group, and shift in position of a carbon­carbon double bond. Feeding studies with Aspergillus mutants did not show ergotryptamine turnover, suggesting it is a pathway byproduct as opposed to an authentic intermediate. Several Epichloë species also produced this metabolite, and further investigations revealed the equivalency of ergotryptamine with an Epichloë-derived ergot alkaloid provisionally described as 6,7-secolysergine.


Subject(s)
Aspergillus nidulans/metabolism , Epichloe/metabolism , Ergot Alkaloids/analysis , Ergot Alkaloids/chemistry , Organisms, Genetically Modified/metabolism , Agriculture , Aspergillus nidulans/genetics , Epichloe/genetics , Magnetic Resonance Spectroscopy , Molecular Structure
3.
J Chem Ecol ; 39(7): 919-30, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23835852

ABSTRACT

Ergot alkaloids are mycotoxins that can increase host plant resistance to above- and below-ground herbivores. Some morning glories (Convolvulaceae) are infected by clavicipitaceous fungi (Periglandula spp.) that produce high concentrations of ergot alkaloids in seeds-up to 1000-fold greater than endophyte-infected grasses. Here, we evaluated the diversity and distribution of alkaloids in seeds and seedlings and variation in alkaloid distribution among species. We treated half the plants with fungicide to differentiate seed-borne alkaloids from alkaloids produced de novo post-germination and sampled seedling tissues at the cotyledon and first-leaf stages. Seed-borne alkaloids in Ipomoea amnicola, I. argillicola, and I. hildebrandtii remained primarily in the cotyledons, whereas I. tricolor allocated lysergic acid amides to the roots while retaining clavines in the cotyledons. In I. hildebrandtii, almost all festuclavine was found in the cotyledons. These observations suggest differential allocation of individual alkaloids. Intraspecific patterns of alkaloid distribution did not vary between fungicide-treated and control seedlings. Each species contained four to six unique ergot alkaloids and two species had the ergopeptine ergobalansine. De novo production of alkaloids did not begin immediately, as total alkaloids in fungicide-treated and control seedlings did not differ through the first-leaf stage, except in I. argillicola. In an extended time-course experiment with I. tricolor, de novo production was detected after the first-leaf stage. Our results demonstrate that allocation of seed-borne ergot alkaloids varies among species and tissues but is not altered by fungicide treatment. This variation may reflect a response to selection for defense against natural enemies.


Subject(s)
Ergot Alkaloids/chemistry , Hypocreales/metabolism , Ipomoea/chemistry , Seedlings/chemistry , Seeds/chemistry , Ergot Alkaloids/biosynthesis , Ipomoea/metabolism , Ipomoea/microbiology , Seedlings/metabolism
4.
Toxins (Basel) ; 5(2): 445-55, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23435153

ABSTRACT

Ergot alkaloids are pharmaceutically and agriculturally important secondary metabolites produced by several species of fungi. Ergot alkaloid pathways vary among different fungal lineages, but the pathway intermediate chanoclavine-I is evolutionarily conserved among ergot alkaloid producers. At least four genes, dmaW, easF, easE, and easC, are necessary for pathway steps prior to chanoclavine-I; however, the sufficiency of these genes for chanoclavine-I synthesis has not been established. A fragment of genomic DNA containing dmaW, easF, easE, and easC was amplified from the human-pathogenic, ergot alkaloid-producing fungus Aspergillus fumigatus and transformed into Aspergillus nidulans, a model fungus that does not contain any of the ergot alkaloid synthesis genes. HPLC and LC-MS analyses demonstrated that transformed A. nidulans strains produced chanoclavine-I and an earlier pathway intermediate. Aspergillus nidulans transformants containing dmaW, easF, and either easE or easC did not produce chanoclavine-I but did produce an early pathway intermediate and, in the case of the easC transformant, an additional ergot alkaloid-like compound. We conclude that dmaW, easF, easE, and easC are sufficient for the synthesis of chanoclavine-I in A. nidulans and expressing ergot alkaloid pathway genes in A. nidulans provides a novel approach to understanding the early steps in ergot alkaloid synthesis.


Subject(s)
Aspergillus nidulans/genetics , Ergot Alkaloids/genetics , Genes, Fungal/genetics , Mycotoxins/genetics , Aspergillus fumigatus/genetics , Aspergillus nidulans/metabolism , Gene Expression
5.
Methods Enzymol ; 515: 267-90, 2012.
Article in English | MEDLINE | ID: mdl-22999178

ABSTRACT

The ergot alkaloids are a family of secondary metabolites produced by a phylogenetically discontinuous group of fungi. Various members of the family are important in agriculture, where they accumulate in grain crops or forage grasses and adversely affect humans or animals who consume them. Other ergot alkaloids have been used clinically to treat a variety of diseases. Because of their significance in agriculture and medicine, the ability to detect and quantify these alkaloids from a variety of substrates is important. The primary analytical approach for these purposes has been high performance liquid chromatography. The ability to manipulate ergot alkaloid production in fungi, by transformation-mediated approaches, has been useful for studies on the biosynthesis of these alkaloids and may have practical application in agriculture and medicine. Such modifications have been informed by comparative genomic approaches, which have provided information on the gene clusters associated with ergot alkaloid biosynthesis.


Subject(s)
Ergot Alkaloids/chemistry , Genes, Fungal , Transformation, Genetic , Aspergillus fumigatus/chemistry , Aspergillus fumigatus/genetics , Chromatography, High Pressure Liquid , Claviceps/chemistry , Claviceps/genetics , DNA, Fungal/genetics , Endophytes/chemistry , Endophytes/genetics , Ergot Alkaloids/biosynthesis , Fluorescence , Gene Knockout Techniques , Genomics/methods , Neotyphodium/chemistry , Neotyphodium/genetics , Poaceae/microbiology , Protoplasts/chemistry , Species Specificity , Spores, Fungal/chemistry , Spores, Fungal/cytology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...