Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37055584

ABSTRACT

The Green Weaver ants, Oecophylla smaragdina are iconic animals known for their extreme cooperative behaviour where they bridge gaps by linking to each other to build living chains. They are visually oriented animals, build chains towards closer targets, use celestial compass cues for navigation and are visual predators. Here, we describe their visual sensory capacity. The major workers of O. smaragdina have more ommatidia (804) in each eye compared to minor workers (508), but the facet diameters are comparable between both castes. We measured the impulse responses of the compound eye and found their response duration (42 ms) was similar to that seen in other slow-moving ants. We determined the flicker fusion frequency of the compound eye at the brightest light intensity to be 132 Hz, which is relatively fast for a walking insect suggesting the visual system is well suited for a diurnal lifestyle. Using pattern-electroretinography we identified the compound eye has a spatial resolving power of 0.5 cycles deg-1 and reached peak contrast sensitivity of 2.9 (35% Michelson contrast threshold) at 0.05 cycles deg-1. We discuss the relationship of spatial resolution and contrast sensitivity, with number of ommatidia and size of the lens.


Subject(s)
Ants , Animals , Ants/physiology , Insecta , Contrast Sensitivity , Light
2.
N Engl J Med ; 387(16): 1442-1443, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36251784
3.
J R Soc Interface ; 18(183): 20210533, 2021 10.
Article in English | MEDLINE | ID: mdl-34699727

ABSTRACT

Shark bites on humans are rare but are sufficiently frequent to generate substantial public concern, which typically leads to measures to reduce their frequency. Unfortunately, we understand little about why sharks bite humans. One theory for bites occurring at the surface, e.g. on surfers, is that of mistaken identity, whereby sharks mistake humans for their typical prey (pinnipeds in the case of white sharks). This study tests the mistaken identity theory by comparing video footage of pinnipeds, humans swimming and humans paddling surfboards, from the perspective of a white shark viewing these objects from below. Videos were processed to reflect how a shark's retina would detect the visual motion and shape cues. Motion cues of humans swimming, humans paddling surfboards and pinnipeds swimming did not differ significantly. The shape of paddled surfboards and human swimmers was also similar to that of pinnipeds with their flippers abducted. The difference in shape between pinnipeds with abducted versus adducted flippers was bigger than between pinnipeds with flippers abducted and surfboards or human swimmers. From the perspective of a white shark, therefore, neither visual motion nor shape cues allow an unequivocal visual distinction between pinnipeds and humans, supporting the mistaken identity theory behind some bites.


Subject(s)
Bites and Stings , Sharks , Animals , Humans , Swimming
4.
J Exp Biol ; 224(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34542631

ABSTRACT

In addition to compound eyes, insects possess simple eyes known as ocelli. Input from the ocelli modulates optomotor responses, flight-time initiation, and phototactic responses - behaviours that are mediated predominantly by the compound eyes. In this study, using pattern electroretinography (pERG), we investigated the contribution of the compound eyes to ocellar spatial vision in the diurnal Australian bull ant Myrmecia tarsata by measuring the contrast sensitivity and spatial resolving power of the ocellar second-order neurons under various occlusion conditions. Furthermore, in four species of Myrmecia ants active at different times of the day, and in European honeybee Apis mellifera, we characterized the ocellar visual properties when both visual systems were available. Among the ants, we found that the time of activity had no significant effect on ocellar spatial vision. Comparing day-active ants and the honeybee, we did not find any significant effect of locomotion on ocellar spatial vision. In M. tarsata, when the compound eyes were occluded, the amplitude of the pERG signal from the ocelli was reduced 3 times compared with conditions when the compound eyes were available. The signal from the compound eyes maintained the maximum contrast sensitivity of the ocelli as 13 (7.7%), and the spatial resolving power as 0.29 cycles deg-1. We conclude that ocellar spatial vison improves significantly with input from the compound eyes, with a noticeably larger improvement in contrast sensitivity than in spatial resolving power.


Subject(s)
Ants , Animals , Australia , Bees , Compound Eye, Arthropod , Contrast Sensitivity , Vision, Ocular
5.
Vision Res ; 169: 25-32, 2020 04.
Article in English | MEDLINE | ID: mdl-32145455

ABSTRACT

Most animals rely on vision to perform a range of behavioural tasks and variations in the anatomy and physiology of the eye likely reflect differences in habitat and life history. Moreover, eye design represents a balance between often conflicting requirements for gathering different forms of visual information. The trade-off between spatial resolving power and contrast sensitivity is common to all visual systems, and European honeybees (Apis mellifera) present an important opportunity to better understand this trade-off. Vision has been studied extensively in A. mellifera as it is vital for foraging, navigation and communication. Consequently, spatial resolving power and contrast sensitivity in A. mellifera have been measured using several methodologies; however, there is considerable variation in estimates between methodologies. We assess pattern electroretinography (pERG) as a new method for assessing the trade-off between visual spatial and contrast information in A.mellifera. pERG has the benefit of measuring spatial contrast sensitivity from higher order visual processing neurons in the eye. Spatial resolving power of A.mellifera estimated from pERG was 0.54 cycles per degree (cpd), and contrast sensitivity was 16.9. pERG estimates of contrast sensitivity were comparable to previous behavioural studies. Estimates of spatial resolving power reflected anatomical estimates in the frontal region of the eye, which corresponds to the region stimulated by pERG. Apis mellifera has similar spatial contrast sensitivity to other hymenopteran insects with similar facet diameter (Myrmecia ant species). Our results support the idea that eye anatomy has a substantial effect on spatial contrast sensitivity in compound eyes.


Subject(s)
Bees , Vision, Ocular , Visual Perception , Animals , Bees/physiology , Contrast Sensitivity
6.
Sci Rep ; 9(1): 6924, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061394

ABSTRACT

The effect of sound on the behaviour of sharks has not been investigated since the 1970s. Sound is, however, an important sensory stimulus underwater, as it can spread in all directions quickly and propagate further than any other sensory cue. We used a baited underwater camera rig to record the behavioural responses of eight species of sharks (seven reef and coastal shark species and the white shark, Carcharodon carcharias) to the playback of two distinct sound stimuli in the wild: an orca call sequence and an artificially generated sound. When sounds were playing, reef and coastal sharks were less numerous in the area, were responsible for fewer interactions with the baited test rigs, and displayed less 'inquisitive' behaviour, compared to during silent control trials. White sharks spent less time around the baited camera rig when the artificial sound was presented, but showed no significant difference in behaviour in response to orca calls. The use of the presented acoustic stimuli alone is not an effective deterrent for C. carcharias. The behavioural response of reef sharks to sound raises concern about the effects of anthropogenic noise on these taxa.


Subject(s)
Behavior, Animal , Sharks , Sound , Water , Animals , Immersion , Species Specificity , Swimming
7.
J Exp Biol ; 222(Pt 12)2019 06 19.
Article in English | MEDLINE | ID: mdl-31138641

ABSTRACT

Vision is crucial for animals to find prey, locate conspecifics and navigate within cluttered landscapes. Animals need to discriminate objects against a visually noisy background. However, the ability to detect spatial information is limited by eye size. In insects, as individuals become smaller, the space available for the eyes reduces, which affects the number of ommatidia, the size of the lens and the downstream information-processing capabilities. The evolution of small body size in a lineage, known as miniaturisation, is common in insects. Here, using pattern electroretinography with vertical sinusoidal gratings as stimuli, we studied how miniaturisation affects spatial resolving power and contrast sensitivity in four diurnal ants that live in a similar environment but vary in their body and eye size. We found that ants with fewer and smaller ommatidial facets had lower spatial resolving power and contrast sensitivity. The spatial resolving power was maximum in the largest ant Myrmecia tarsata at 0.60 cycles deg-1 compared with that of the ant with smallest eyes Rhytidoponera inornata at 0.48 cycles deg-1 Maximum contrast sensitivity (minimum contrast threshold) in M. tarsata (2627 facets) was 15.51 (6.4% contrast detection threshold) at 0.1 cycles deg-1, while the smallest ant R. inornata (227 facets) had a maximum contrast sensitivity of 1.34 (74.1% contrast detection threshold) at 0.05 cycles deg-1 Miniaturisation thus dramatically decreases maximum contrast sensitivity and also reduces spatial resolution, which could have implications for visually guided behaviours. This is the first study to physiologically investigate contrast sensitivity in the context of insect allometry.


Subject(s)
Ants/physiology , Visual Perception , Animals , Contrast Sensitivity , Miniaturization , Species Specificity
8.
Article in English | MEDLINE | ID: mdl-28247014

ABSTRACT

In most animals, vision plays an important role in detecting prey, predators and conspecifics. The effectiveness of vision in assessing cues such as motion and shape is influenced by the ability of the visual system to detect changes in contrast in both space and time. Understanding the role vision plays in shark behaviour has been limited by a lack of knowledge about their temporal resolution, contrast sensitivity and spatial resolution. In this study, an electrophysiological approach was used to compare these measures across five species of sharks: Chiloscyllium punctatum, Heterodontus portusjacksoni, Hemiscyllium ocellatum, Mustelus mustelus and Haploblepharus edwardsii. All shark species were highly sensitive to brightness contrast and were able to detect contrast differences as low as 1.6%. Temporal resolution of flickering stimuli ranged from 28 to 44 Hz. Species that inhabit brighter environments were found to have higher temporal resolution. Spatial resolving power was estimated in C. punctatum, H. portusjacksoni and H. ocellatum and ranged from 0.10 to 0.35 cycles per degree, which is relatively low compared to other vertebrates. These results suggest that sharks have retinal adaptations that enhance contrast sensitivity at the expense of temporal and spatial resolution, which is beneficial for vision in dimly lit and/or low contrast aquatic environments.


Subject(s)
Contrast Sensitivity/physiology , Photic Stimulation/methods , Sharks/physiology , Space Perception/physiology , Time Perception/physiology , Animals , Electrophysiological Phenomena/physiology , Female , Form Perception/physiology , Male , Time Factors
9.
J Exp Biol ; 219(Pt 24): 3971-3980, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27802139

ABSTRACT

Sharks have long been described as having 'poor' vision. They are cone monochromats and anatomical estimates suggest they have low spatial resolution. However, there are no direct behavioural measurements of spatial resolution or contrast sensitivity. This study estimates contrast sensitivity and spatial resolution of two species of benthic sharks, the Port Jackson shark, Heterodontus portusjacksoni, and the brown-banded bamboo shark, Chiloscyllium punctatum, by recording eye movements in response to optokinetic stimuli. Both species tracked moving low spatial frequency gratings with weak but consistent eye movements. Eye movements ceased at 0.38 cycles per degree, even for high contrasts, suggesting low spatial resolution. However, at lower spatial frequencies, eye movements were elicited by low contrast gratings, 1.3% and 2.9% contrast in H portusjacksoni and C. punctatum, respectively. Contrast sensitivity was higher than in other vertebrates with a similar spatial resolving power, which may reflect an adaptation to the relatively low contrast encountered in aquatic environments. Optokinetic gain was consistently low and neither species stabilised the gratings on their retina. To check whether restraining the animals affected their optokinetic responses, we also analysed eye movements in free-swimming C. punctatum We found no eye movements that could compensate for body rotations, suggesting that vision may pass through phases of stabilisation and blur during swimming. As C. punctatum is a sedentary benthic species, gaze stabilisation during swimming may not be essential. Our results suggest that vision in sharks is not 'poor' as previously suggested, but optimised for contrast detection rather than spatial resolution.


Subject(s)
Contrast Sensitivity/physiology , Ecosystem , Sharks/physiology , Vision, Ocular/physiology , Animals , Eye Movements/physiology , Head Movements/physiology , Light , Motion , Photic Stimulation , Swimming/physiology
10.
SELECTION OF CITATIONS
SEARCH DETAIL
...