Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167345, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992847

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a significant public health concern worldwide. Immunomodulatory targets in the HNSCC tumor microenvironment are crucial to enhance the efficacy of HNSCC immunotherapy. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that has been linked to poor prognosis in many cancers, but the mechanistic role of MIF in HNSCC remains unclear. Using a murine orthotopic oral cancer model in Mif+/+ or Mif-/- mice, we determined the function of host derived MIF in HNSCC tumor development, metastasis as well as localized and systemic tumor immune responses. We observed that Mif-/- mice have decreased tumor growth and tumor burden compared to their wild-type counterparts. Flow cytometric analysis of immune populations within the primary tumor site revealed increased Th1 and cytotoxic T cell recruitment to the HNSCC tumor microenvironment. Within the tumors of Mif-/- mice, MIF deletion also enhanced the effector function of anti-tumoral effector CD8+ T cells as well as Th1 cells and decreased the accumulation of granulocytic myeloid derived suppressor cells (g-MDSCs) in the tumor microenvironment. Furthermore, MDSCs isolated from tumor bearing mice chemotactically respond to MIF in a dose dependent manner. Taken together, our results demonstrate a chemotactic and immunomodulatory role for host derived MIF in promoting HNSCC and suggest that MIF targeted immunomodulation is a promising approach for HNSCC treatment.

2.
Vaccines (Basel) ; 11(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37515028

ABSTRACT

Onchocerciasis remains a debilitating neglected tropical disease. Due to the many challenges of current control methods, an effective vaccine against the causative agent Onchocerca volvulus is urgently needed. Mice and cynomolgus macaque non-human primates (NHPs) were immunized with a vaccine consisting of a fusion of two O. volvulus protein antigens, Ov-103 and Ov-RAL-2 (Ov-FUS-1), and three different adjuvants: Advax-CpG, alum, and AlT4. All vaccine formulations induced high antigen-specific IgG titers in both mice and NHPs. Challenging mice with O. volvulus L3 contained within subcutaneous diffusion chambers demonstrated that Ov-FUS-1/Advax-CpG-immunized animals developed protective immunity, durable for at least 11 weeks. Passive transfer of sera, collected at several time points, from both mice and NHPs immunized with Ov-FUS-1/Advax-CpG transferred protection to naïve mice. These results demonstrate that Ov-FUS-1 with the adjuvant Advax-CpG induces durable protective immunity against O. volvulus in mice and NHPs that is mediated by vaccine-induced humoral factors.

3.
Cancers (Basel) ; 15(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37444444

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is common and deadly, and there is a need for improved strategies to predict treatment responses. Ionizing radiation (IR) has been demonstrated to improve HNSCC outcomes, but its effects on immune responses are not well characterized. We determined the impact of IR on T cell immune responses ex vivo. Human and mouse HNSCC cells were exposed to IR ranging from 20 to 200 Gy to determine cell viability and the ability to stimulate T-cell-specific responses. Lymph node cells of LY2 and MOC2 tumor-bearing or non-tumor-bearing mice were re-stimulated with a tumor antigen derived from LY2 or MOC2 cells treated with 200 Gy IR, ultraviolet (UV) exposure, or freeze/thaw cycle treatments. T cell proliferation and cytokine production were compared to T cells restimulated with plate-bound CD3 and CD28 antibodies. Human and mouse HNSCC cells showed reduced viability in response to ionizing radiation in a dose-dependent manner, and induced expression of T cell chemotactic cytokines. Tumor antigens derived from IR-treated LY2 and MOC2 cells induced greater proliferation of lymph node cells from tumor-bearing mice and induced unique T cell cytokine expression profiles. Our results demonstrate that IR induces potent tumoral immune responses, and IR-generated tumor antigens can potentially serve as an indicator of antitumor immune responses to HNSCC in ex vivo T cell restimulation assays.

4.
Cancer Gene Ther ; 30(8): 1167-1177, 2023 08.
Article in English | MEDLINE | ID: mdl-37231058

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a significant public health problem, with a need for novel approaches to chemoprevention and treatment. Preclinical models that recapitulate molecular alterations that occur in clinical HNSCC patients are needed to better understand molecular and immune mechanisms of HNSCC carcinogenesis, chemoprevention, and efficacy of treatment. We optimized a mouse model of tongue carcinogenesis with discrete quantifiable tumors via conditional deletion of Tgfßr1 and Pten by intralingual injection of tamoxifen. We characterized the localized immune tumor microenvironment, metastasis, systemic immune responses, associated with tongue tumor development. We further determined the efficacy of tongue cancer chemoprevention using dietary administration of black raspberries (BRB). Three Intralingual injections of 500 µg tamoxifen to transgenic K14 Cre, floxed Tgfbr1, Pten (2cKO) knockout mice resulted in tongue tumors with histological and molecular profiles, and lymph node metastasis similar to clinical HNSCC tumors. Bcl2, Bcl-xl, Egfr, Ki-67, and Mmp9, were significantly upregulated in tongue tumors compared to surrounding epithelial tissue. CD4+ and CD8 + T cells in tumor-draining lymph nodes and tumors displayed increased surface CTLA-4 expression, suggestive of impaired T-cell activation and enhanced regulatory T-cell activity. BRB administration resulted in reduced tumor growth, enhanced T-cell infiltration to the tongue tumor microenvironment and robust antitumoral CD8+ cytotoxic T-cell activity characterized by greater granzyme B and perforin expression. Our results demonstrate that intralingual injection of tamoxifen in Tgfßr1/Pten 2cKO mice results in discrete quantifiable tumors suitable for chemoprevention and therapy of experimental HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Tongue Neoplasms , Mice , Animals , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/prevention & control , Carcinoma, Squamous Cell/pathology , Tongue Neoplasms/genetics , Tongue Neoplasms/prevention & control , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/prevention & control , Carcinogenesis/genetics , Mice, Knockout , Chemoprevention , Tamoxifen/therapeutic use , Tongue/metabolism , Tongue/pathology , Tumor Microenvironment/genetics
5.
Front Immunol ; 13: 932742, 2022.
Article in English | MEDLINE | ID: mdl-36016924

ABSTRACT

Head and neck squamous cell carcinomas (HNSCC) are one of the most diagnosed malignancies globally, with a 5-year survival rate of approximately 40% to 50%. Current therapies are limited to highly invasive surgery, aggressive radiation, and chemotherapies. Recent reports have demonstrated the potential phytochemical properties of black raspberries in inhibiting the progression of various cancers including HNSCCs. However, the effects of black raspberry extracts on immune cells of the tumor microenvironment, specifically regulatory T cells during HNSCC, have not been investigated. We used a mouse model of 4-nitroquinoline-1-oxide (4NQO) chemically induced HNSCC carcinogenesis to determine these effects. C57BL/6 mice were exposed to 4NQO for 16 weeks and regular water for 8 weeks. 4NQO-exposed mice were fed the AIN-76A control mouse diet or the AIN76 diet supplemented with black raspberry extract. At terminal sacrifice, tumor burdens and immune cell recruitment and activity were analyzed in the tumor microenvironment, draining lymph nodes, and spleens. Mice fed the BRB extract-supplemented diet displayed decreased tumor burden compared to mice provided the AIN-76A control diet. Black raspberry extract administration did not affect overall T-cell populations as well as Th1, Th2, or Th17 differentiation in spleens and tumor draining lymph nodes. However, dietary black raspberry extract administration inhibited regulatory T-cell recruitment to HNSCC tumor sites. This was associated with an increased cytotoxic immune response in the tumor microenvironment characterized by increased CD8+ T cells and enhanced Granzyme B production during BRB extract-mediated HNSCC chemoprevention. Interestingly, this enhanced CD8+ T-cell antitumoral response was localized at the tumor sites but not at spleens and draining lymph nodes. Furthermore, we found decreased levels of PD-L1 expression by myeloid populations in draining lymph nodes of black raspberry-administered carcinogen-induced mice. Taken together, our findings demonstrate that black raspberry extract inhibits regulatory T-cell recruitment and promotes cytotoxic CD8 T-cell activity at tumor sites during HNSCC chemoprevention. These results demonstrate the immunomodulatory potential of black raspberry extracts and support the use of black raspberry-derived phytochemicals as a complementary approach to HNSCC chemoprevention and treatment.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Rubus , Animals , CD8-Positive T-Lymphocytes , Carcinoma, Squamous Cell/metabolism , Chemoprevention , Disease Models, Animal , Head and Neck Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Squamous Cell Carcinoma of Head and Neck/metabolism , T-Lymphocytes, Regulatory , Tumor Microenvironment
6.
Br J Cancer ; 127(4): 624-636, 2022 09.
Article in English | MEDLINE | ID: mdl-35595823

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a significant problem and is frequently resistant to current treatments. STAT1 is important in anti-tumour immune responses against HNSCC. However, the role of STAT1 expression by tumour cells and its regulation during HNSCC is unclear. METHODS: We determined the effects of STAT1 inhibition on tumour development and immunity in CAL27 and UMSCC22A HNSCC cell lines in vitro and in a HNSCC carcinogen-induced model in vivo. RESULTS: STAT1 siRNA knockdown in human HNSCC cells impaired their proliferation and expression of the immunosuppressive marker PD-L1. Stat1-deficient mice displayed increased oral lesion incidence and multiplicity during tumour carcinogenesis in vivo. Immunosuppressive markers PD-1 in CD8+ T cells and PD-L1 in monocytic MDSCs and macrophages were reduced in oral tumours and draining lymph nodes of tumour-bearing Stat1-deficient mice. However, STAT1 was required for anti-tumour functions of T cells during HNSCC in vivo. Finally, we identified TRIM24 to be a negative regulator of STAT1 that plays a similar tumorigenic function to STAT1 in vitro and thus may be a potential target when treating HNSCC. CONCLUSION: Our findings indicate that STAT1 activity plays an important role in tumorigenicity and immunosuppression during HNSCC development.


Subject(s)
B7-H1 Antigen , Head and Neck Neoplasms , Animals , B7-H1 Antigen/genetics , Carcinogenesis , Carrier Proteins , Cell Line, Tumor , Head and Neck Neoplasms/genetics , Humans , Immunosuppression Therapy , Mice , STAT1 Transcription Factor/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment
7.
Carcinogenesis ; 43(1): 28-39, 2022 02 11.
Article in English | MEDLINE | ID: mdl-34888650

ABSTRACT

Recent reports suggest that glucocorticoids (GCs), which can be synthesized in the oral mucosa, play an important role in cancer development. Therefore, the objectives of this study were to characterize the role of the oral GC system in oral cancer, and determine the effect of black raspberry (BRB) administration on GC modulation during oral cancer chemoprevention. We determined the expression of GC enzymes in various oral cancer cell lines, and investigated the role of the GC inactivating enzyme HSD11B2 on CAL27 oral cancer cells using siRNA mediated knockdown approaches. Using two in vivo models of oral carcinogenesis with 4-nitroquinoline 1-oxide carcinogen on C57Bl/6 mice and F344 rats, we determined the effect of BRB on GC modulation during head and neck squamous cell carcinoma chemoprevention. Our results demonstrate that HSD11B2, which inactivates cortisol to cortisone, is downregulated during oral carcinogenesis in clinical and experimental models. Knockdown of HSD11B2 in oral cancer cells promotes cellular proliferation, invasion and expression of angiogenic biomarkers EGFR and VEGFA. An ethanol extract of BRB increased HSD11B2 expression on oral cancer cells. Dietary administration of 5% BRB increased Hsd11b2 gene and protein expression and reduced the active GC, corticosterone, in cancer-induced mouse tongues. Our results demonstrate that the oral GC system is modulated during oral carcinogenesis, and BRB administration upregulates Hsd11b2 during oral cancer chemoprevention. In conclusion, our findings challenge the use of synthetic GCs in head and neck cancer, and support the use of natural product alternatives that potentially modulate GC metabolism in a manner that supports oral cancer chemoprevention.


Subject(s)
Glucocorticoids/metabolism , Mouth Neoplasms/metabolism , Mouth Neoplasms/prevention & control , Rubus/chemistry , 4-Nitroquinoline-1-oxide/pharmacology , Animals , Carcinogenesis/chemically induced , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogens/pharmacology , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/prevention & control , Cell Line, Tumor , Cell Proliferation/drug effects , Chemoprevention/methods , Disease Models, Animal , Female , Head and Neck Neoplasms/chemically induced , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/prevention & control , Mice , Mice, Inbred C57BL , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism , Mouth Neoplasms/chemically induced , Rats , Rats, Inbred F344 , Squamous Cell Carcinoma of Head and Neck/chemically induced , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/prevention & control
8.
mBio ; 12(6): e0239721, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34903051

ABSTRACT

Chlamydia trachomatis is an obligate intracellular bacterium that has developed sophisticated mechanisms to survive inside its infectious compartment, the inclusion. Notably, Chlamydia weaves an extensive network of microtubules (MTs) and actin filaments to enable interactions with host organelles and enhance its stability. Despite the global health and economic burden caused by this sexually transmitted pathogen, little is known about how actin and MT scaffolds are integrated into an increasingly complex virulence system. Previously, we established that the chlamydial effector InaC interacts with ARF1 to stabilize MTs. We now demonstrate that InaC regulates RhoA to control actin scaffolds. InaC relies on cross talk between ARF1 and RhoA to coordinate MTs and actin, where the presence of RhoA downregulates stable MT scaffolds and ARF1 activation inhibits actin scaffolds. Understanding how Chlamydia hijacks complex networks will help elucidate how this clinically significant pathogen parasitizes its host and reveal novel cellular signaling pathways. IMPORTANCE Chlamydia trachomatis is a major cause of human disease worldwide. The ability of Chlamydia to establish infection and cause disease depends on the maintenance of its parasitic niche, called the inclusion. To accomplish this feat, Chlamydia reorganizes host actin and microtubules around the inclusion membrane. How Chlamydia orchestrates these complex processes, however, is largely unknown. Here, we discovered that the chlamydial effector InaC activates Ras homolog family member A (RhoA) to control the formation of actin scaffolds around the inclusion, an event that is critical for inclusion stability. Furthermore, InaC directs the kinetics of actin and posttranslationally modified microtubule scaffolds by mediating cross talk between the GTPases that control these cytoskeletal elements, RhoA and ADP-ribosylation factor 1 (ARF1). The precise timing of these events is essential for the maintenance of the inclusion. Overall, this study provides the first evidence of ARF1-RhoA-mediated cross talk by a bacterial pathogen to coopt the host cytoskeleton.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , Chlamydia Infections/metabolism , Chlamydia trachomatis/physiology , Cytoskeleton/microbiology , rhoA GTP-Binding Protein/metabolism , ADP-Ribosylation Factor 1/genetics , Actins/genetics , Actins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chlamydia Infections/genetics , Chlamydia Infections/microbiology , Chlamydia trachomatis/genetics , Cytoskeleton/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/microbiology , Protein Binding , Virulence , rhoA GTP-Binding Protein/genetics
9.
Cancers (Basel) ; 13(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668795

ABSTRACT

HNSCC is the sixth most common cancer, with around 650,000 new cases yearly. Gain of function mutations in the PI3K pathway are common in HNSCC, and inhibition of the PI3K p110γ subunit has shown promise in HNSCC treatment. However, given that PI3K p110γ plays an important role in myeloid and lymphoid immune cell function, it is essential to understand how PI3K p110γ inhibition affects the anti-tumor immune response independent of tumor cells. To elucidate PI3K p110γ function in HNSCC, we employed an orthotopic mouse model using poorly immunogenic and aggressive cell line MOC2 on Pik3cg-/- mice. We observed that wild-type and Pik3cg-/- mice displayed similar rates of HNSCC tumor growth and metastasis after 20 days following tumor injection. T-cell infiltration and intrinsic T-cell responses to MOC2 oral tumors were comparable between wild-type and Pik3cg-/- mice. Interestingly, the immune response of tumor-bearing Pik3cg-/- mice was marked by increased anti-tumor cytotoxic molecules (IFN-γ, IL-17)) by T-cells and immune checkpoint marker (PD-L1, PD-1) expression by myeloid cells and T-cells compared to tumor-bearing wild-type mice. Taken together, our findings demonstrate that inhibition of PI3K p110γ modulates tumor-associated immune cells, which likely potentiates HNSCC treatment when used in combination with selective checkpoint inhibitors.

10.
NPJ Vaccines ; 6(1): 17, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33500417

ABSTRACT

This study tests the hypothesis that an Onchocerca volvulus vaccine, consisting of two recombinant antigens (Ov-103 and Ov-RAL-2) formulated with the combination-adjuvant Advax-2, can induce protective immunity in genetically diverse Collaborative Cross recombinant inbred intercross mice (CC-RIX). CC-RIX lines were immunized with the O. volvulus vaccine and challenged with third-stage larvae. Equal and significant reductions in parasite survival were observed in 7 of 8 CC-RIX lines. Innate protective immunity was seen in the single CC-RIX line that did not demonstrate protective adaptive immunity. Analysis of a wide array of immune factors showed that each line of mice have a unique set of immune responses to vaccination and challenge suggesting that the vaccine is polyfunctional, inducing different equally-protective sets of immune responses based on the genetic background of the immunized host. Vaccine efficacy in genetically diverse mice suggests that it will also be effective in genetically complex human populations.

11.
Nutrients ; 12(6)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517233

ABSTRACT

Contact hypersensitivity (CHS) is the most common occupational dermatological disease. Dendritic cells (DCs) mediate the sensitization stage of CHS, while T-cells facilitate the effector mechanisms that drive CHS. Black raspberry (Rubus occidentalis, BRB) and BRB phytochemicals possess immunomodulatory properties, but their dietary effects on CHS are unknown. We examined the effects of diets containing BRB and protocatechuic acid (PCA, a constituent of BRB and an anthocyanin metabolite produced largely by gut microbes), on CHS, using a model induced by 2,4-dinitrofluorobenze (DNFB). Mice were fed control diet or diets supplemented with BRB or PCA. In vitro bone-marrow derived DCs and RAW264.7 macrophages were treated with BRB extract and PCA. Mice fed BRB or PCA supplemented diets displayed decreased DNFB-induced ear swelling, marked by decreased splenic DC accumulation. BRB extract diminished DC maturation associated with reduced Cd80 expression and Interleukin (IL)-12 secretion, and PCA reduced IL-12. Dietary supplementation with BRB and PCA induced differential decreases in IL-12-driven CHS mediators, including Interferon (IFN)-γ and IL-17 production by T-cells. BRB extracts and PCA directly attenuated CHS-promoting macrophage activity mediated by nitric oxide and IL-12. Our results demonstrate that BRB and PCA mitigate CHS pathology, providing a rationale for CHS alleviation via dietary supplementation with BRB or BRB derived anthocyanins.


Subject(s)
Dendritic Cells/immunology , Dermatitis, Contact/immunology , Dermatitis, Contact/therapy , Dietary Supplements , Dinitrofluorobenzene/adverse effects , Hydroxybenzoates/pharmacology , Hydroxybenzoates/therapeutic use , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rubus , Animals , B7-1 Antigen/metabolism , Dermatitis, Contact/etiology , Dermatitis, Contact/metabolism , Disease Models, Animal , Interferon-gamma/metabolism , Interleukin-12/metabolism , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , T-Lymphocytes/immunology
12.
Article in English | MEDLINE | ID: mdl-32363166

ABSTRACT

Parasitic infections pose a wide and varying threat globally, impacting over 25% of the global population with many more at risk of infection. These infections are comprised of, but not limited to, toxoplasmosis, malaria, leishmaniasis and any one of a wide variety of helminthic infections. While a great deal is understood about the adaptive immune response to each of these parasites, there remains a need to further elucidate the early innate immune response. Interleukin-33 is being revealed as one of the earliest players in the cytokine milieu responding to parasitic invasion, and as such has been given the name "alarmin." A nuclear cytokine, interleukin-33 is housed primarily within epithelial and fibroblastic tissues and is released upon cellular damage or death. Evidence has shown that interleukin-33 seems to play a crucial role in priming the immune system toward a strong T helper type 2 immune response, necessary in the clearance of some parasites, while disease exacerbating in the context of others. With the possibility of being a double-edged sword, a great deal remains to be seen in how interleukin-33 and its receptor ST2 are involved in the immune response different parasites elicit, and how those parasites may manipulate or evade this host mechanism. In this review article we compile the current cutting-edge research into the interleukin-33 response to toxoplasmosis, malaria, leishmania, and helminthic infection. Furthermore, we provide insight into directions interleukin-33 research may take in the future, potential immunotherapeutic applications of interleukin-33 modulation and how a better clarity of early innate immune system responses involving interleukin-33/ST2 signaling may be applied in development of much needed treatment options against parasitic invaders.


Subject(s)
Communicable Diseases , Parasitic Diseases , Humans , Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Parasitic Diseases/drug therapy
13.
Lab Med ; 51(3): 252-258, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32374393

ABSTRACT

BACKGROUND: Protein concentration of monoclonal immunoglobulin in plasma-cell myeloma/multiple myeloma provides an estimate of the tumor mass and allows for monitoring of the response to treatment. Accurate and reproducible estimates of the monoclonal immunoglobulin concentration are important for patient care. OBJECTIVE: To address the optimum method for estimation of the concentration of monoclonal immunoglobulins. METHODS: Serum protein electrophoresis and immunofixation electrophoresis were conducted by using the Helena SPIFE Touch instrument. Estimation of the protein concentration of monoclonal immunoglobulin in the gamma region by computer-assisted reading was compared with the reading by technologists and pathology residents, in 300 gels. The data were compared using t-testing and analysis of variance. RESULTS: Computer-generated readings had a consistent positive bias. The correlation coefficient of the average reading by technologists and residents with the computer generated value was 0.997. The average positive bias by the computer reading was 0.29 g per dL. The intercept on the regression analysis was 0.22 g per dL. The reading by the computer was significantly higher than each of the human-interpreted readings. The readings by the 3 human groups were not significantly different amongst them. The main reason for the higher reading by the computer was inclusion of a greater area on the anodal size of the peak on the densitometric scan. CONCLUSIONS: Human- and computer-interpreted readings of the protein concentration of monoclonal immunoglobulin have a high degree of correlation. The consistent positive bias by the computer reading occurred due to inclusion of a greater area of the densitometric scan on the anodal side of the peak. We suggest that vendors should adjust such computer programs to provide readings comparable to those generated by expert humans. We recommend manual delineation of the monoclonal peaks for measuring the concentration of monoclonal immunoglobulins.


Subject(s)
Antibodies, Monoclonal/analysis , Automation, Laboratory/methods , Blood Protein Electrophoresis/methods , Densitometry/methods , Image Processing, Computer-Assisted/methods , Immunoglobulin G/analysis , Multiple Myeloma/diagnosis , Humans , Immunoelectrophoresis , Observer Variation , Reference Standards , Tumor Burden
14.
Int J Cancer ; 146(6): 1717-1729, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31709529

ABSTRACT

Cancers of the oral cavity remain the sixth most diagnosed cancer worldwide, with high rates of recurrence and mortality. We determined the role of STAT1 during oral carcinogenesis using two orthotopic models in mice genetically deficient for Stat1. Metastatic (LY2) and nonmetastatic (B4B8) head and neck squamous cell carcinoma (HNSCC) cell lines were injected into the oral cavity of Stat1 deficient (Stat1-/- ) and Stat1 competent (Stat1+/+ ) mice. Stat1-/- mice displayed increased tumor growth and metastasis compared to Stat1+/+ mice. Mechanistically, Stat1-/- mice displayed impaired CD4+ and CD8+ T-cell expansion compared to Stat1+/+ mice. This was associated with enhanced T-cell exhaustion, and severely attenuated T-cell antitumor effector responses including reduced expression of IFN-γ and perforin at the tumor site. Interestingly, tumor necrosis factor (TNF)-α production by T cells in tumor-bearing mice was suppressed by Stat1 deficiency. This deficiency in T-cell expansion and functional responses in mice was linked to PD-1 and CD69 overexpression in T cells of Stat1-/- mice. In contrast, we observed increased accumulation of CD11b+ Ly6G+ myeloid derived suppressor cells in tumors, draining lymph nodes, spleens and bone marrow of tumor-bearing Stat1-/- mice, resulting in a protumorigenic microenvironment. Our data demonstrates that STAT1 is an essential mediator of the antitumor response through inhibition of myeloid derived suppressor cell accumulation and promotion of T-cell mediated immune responses in murine head and neck squamous cell carcinoma. Selective induction of STAT1 phosphorylation in HNSCC patients could potentially improve oral tumor outcomes and response to therapy.


Subject(s)
Immunomodulation , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , STAT1 Transcription Factor/metabolism , Squamous Cell Carcinoma of Head and Neck/etiology , Squamous Cell Carcinoma of Head and Neck/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Female , Humans , Lymph Nodes/pathology , Male , Mice , Mice, Knockout , Neoplasm Metastasis , Neoplasm Staging , STAT1 Transcription Factor/deficiency , Squamous Cell Carcinoma of Head and Neck/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Microenvironment
16.
Metabolites ; 9(7)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31336728

ABSTRACT

Oral cancer is a public health problem with an incidence of almost 50,000 and a mortality of 10,000 each year in the USA alone. Black raspberries (BRBs) have been shown to inhibit oral carcinogenesis in several preclinical models, but our understanding of how BRB phytochemicals affect the metabolic pathways during oral carcinogenesis remains incomplete. We used a well-established rat oral cancer model to determine potential metabolic pathways impacted by BRBs during oral carcinogenesis. F344 rats were exposed to the oral carcinogen 4-nitroquinoline-1-oxide in drinking water for 14 weeks, then regular drinking water for six weeks. Carcinogen exposed rats were fed a 5% or 10% BRB supplemented diet or control diet for six weeks after carcinogen exposure. RNA-Seq transcriptome analysis on rat tongue, and mass spectrometry and NMR metabolomics analysis on rat urine were performed. We tentatively identified 57 differentially or uniquely expressed metabolites and over 662 modulated genes in rats being fed with BRB. Glycolysis and AMPK pathways were modulated during BRB-mediated oral cancer chemoprevention. Glycolytic enzymes Aldoa, Hk2, Tpi1, Pgam2, Pfkl, and Pkm2 as well as the PKA-AMPK pathway genes Prkaa2, Pde4a, Pde10a, Ywhag, and Crebbp were downregulated by BRBs during oral cancer chemoprevention. Furthermore, the glycolysis metabolite glucose-6-phosphate decreased in BRB-administered rats. Our data reveal the novel metabolic pathways modulated by BRB phytochemicals that can be targeted during the chemoprevention of oral cancer.

17.
Article in English | MEDLINE | ID: mdl-31130996

ABSTRACT

Neglected Tropical Diseases (NTDs) comprise of a group of seventeen infectious conditions endemic in many developing countries. Among these diseases are three of protozoan origin, namely leishmaniasis, Chagas disease, and African trypanosomiasis, caused by the parasites Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei respectively. These diseases have their own unique challenges which are associated with the development of effective prevention and treatment methods. Collectively, these parasitic diseases cause more deaths worldwide than all other NTDs combined. Moreover, many current therapies for these diseases are limited in their efficacy, possessing harmful or potentially fatal side effects at therapeutic doses. It is therefore imperative that new treatment strategies for these parasitic diseases are developed. Nanoparticulate drug delivery systems have emerged as a promising area of research in the therapy and prevention of NTDs. These delivery systems provide novel mechanisms for targeted drug delivery within the host, maximizing therapeutic effects while minimizing systemic side effects. Currently approved drugs may also be repackaged using these delivery systems, allowing for their potential use in NTDs of protozoan origin. Current research on these novel delivery systems has provided insight into possible indications, with evidence demonstrating their improved ability to specifically target pathogens, penetrate barriers within the host, and reduce toxicity with lower dose regimens. In this review, we will examine current research on these delivery systems, focusing on applications in the treatment of leishmaniasis, Chagas disease, and African trypanosomiasis. Nanoparticulate systems present a unique therapeutic alternative through the repositioning of existing medications and directed drug delivery.

18.
Biosci Rep ; 39(2)2019 02 28.
Article in English | MEDLINE | ID: mdl-30670631

ABSTRACT

Mast cells are long-lived, innate immune cells of the myeloid lineage which are found in peripheral tissues located throughout the body, and positioned at the interface between the host and the environment. Mast cells are found in high concentrations during helminth infection. Using Kitw-sh mast cell deficient mice, a recently published study in Bioscience Reports by Gonzalez et al. (Biosci. Rep., 2018) focused on the role of mast cells in the immune response to infection by the helminth Hymenolepis diminuta The authors showed that mast cells play a role in the modulation of Th2 immune response characterized by a unique IL-4, IL-5 and IL-13 cytokine profile, as well as subsequent robust worm expulsion during H. diminuta infection. Unlike WT mice which expelled H. diminuta at day 10, Kitw-sh deficient mice displayed delayed worm expulsion (day 14 post infection). Further, a possible role for mast cells in the basal expression of cytokines IL-25, IL-33 and thymic stromal lymphopoietin was described. Deletion of neutrophils in Kitw-sh deficient mice enhanced H. diminuta expulsion, which was accompanied by splenomegaly. However, interactions between mast cells and other innate and adaptive immune cells during helminth infections are yet to be fully clarified. We conclude that the elucidation of mechanisms underlying mast cell interactions with cells of the innate and adaptive immune system during infection by helminths can potentially uncover novel therapeutic applications against inflammatory, autoimmune and neoplastic diseases.


Subject(s)
Hymenolepiasis , Hymenolepis diminuta , Animals , Biomass , Mast Cells , Mice , Rats
19.
J Infect Dis ; 219(4): 599-608, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30239895

ABSTRACT

Background: New drugs are needed for leishmaniasis because current treatments such as pentavalent antimonials are toxic and require prolonged administration, leading to poor patient compliance. Ibrutinib is an anticancer drug known to modulate T-helper type 1 (Th1)/Th2 responses and has the potential to regulate immunity against infectious disease. Methods: In this study, we evaluated the efficacy of oral ibrutinib as a host-targeted treatment for visceral leishmaniasis (VL) caused by Leishmania donovani using an experimental mouse model. Results: We found that oral ibrutinib was significantly more effective than the pentavalent antimonial sodium stibogluconate (70 mg/kg) for the treatment of VL caused by L. donovani. Ibrutinib treatment increased the number of interleukin 4- and interferon γ-producing natural killer T cells in the liver and spleen and enhanced granuloma formation in the liver. Further, ibrutinib treatment reduced the influx of Ly6Chi inflammatory monocytes, which mediate susceptibility to L. donovani. Finally, ibrutinib treatment was associated with the increased production of the cytokines interferon γ, tumor necrosis factor α, interleukin 4, and interleukin 13 in the liver and spleen, which are associated with protection against L. donovani. Conclusions: Our findings show that oral ibrutinib is highly effective for the treatment of VL caused by L. donovani and mediates its antileishmanial activity by promoting host immunity. Therefore, ibrutinib could be a novel host-targeted drug for the treatment of VL.


Subject(s)
Immunologic Factors/administration & dosage , Leishmania donovani/growth & development , Leishmaniasis, Visceral/drug therapy , Protein Kinase Inhibitors/administration & dosage , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Adenine/analogs & derivatives , Administration, Oral , Animals , Cytokines/metabolism , Disease Models, Animal , Female , Immunity, Cellular , Mice , Mice, Inbred BALB C , Piperidines , Treatment Outcome
20.
Front Immunol ; 10: 3095, 2019.
Article in English | MEDLINE | ID: mdl-32010142

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a prevalent form of cancer with 5-years survival rates around 57%, and metastasis is a leading cause of mortality. Host-derived immunological factors that affect HNSCC tumor development and metastasis are not completely understood. We investigated the role of host-derived signal transducer and activator of transcription 4 (STAT4) during experimental HNSCC using an aggressive and metastatic HNSCC cell line, LY2, which was orthotopically injected into the buccal sulcus of wild type (WT) and STAT4 deficient (Stat4-/-) BALB/c mice. Necropsies performed at terminal sacrifice revealed that Stat4-/- mice displayed comparable primary tumor growth to the WT mice. However, the rate and extent of lymph node and lung metastasis among Stat4-/- mice was significantly higher. Downstream analyses performed on primary tumors, draining lymph nodes, spleens and bone marrow revealed significant upregulation of lymphocytic immunosuppressive biomarkers as well as an accumulation of granulocytic MDSC subpopulations in draining lymph nodes of metastatic Stat4-/- mice. Further, we observed a significant decrease in TH1, TH17, and cytotoxic activity in tumor bearing Stat4-/- compared to WT mice. Our results demonstrate that STAT4 mediates resistance to HNSCC metastasis, and activation of STAT4 could potentially mitigate lymphatic metastasis in HNSCC patients.


Subject(s)
Head and Neck Neoplasms/immunology , Immunity, Cellular , STAT4 Transcription Factor/deficiency , Squamous Cell Carcinoma of Head and Neck/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Animals , Cell Line, Tumor , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Lymphatic Metastasis , Mice , Mice, Inbred BALB C , Mice, Knockout , STAT4 Transcription Factor/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Th1 Cells/pathology , Th17 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL