Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729611

ABSTRACT

Resident memory T cells (TRMs) help control local immune homeostasis and contribute to tissue-protective immune responses. The local cues that guide their differentiation and localization are poorly defined. We demonstrate that mucosal vascular addressin cell adhesion molecule 1, a ligand for the gut-homing receptor α4ß7 integrin, in the presence of retinoic acid and transforming growth factor-ß (TGF-ß) provides a co-stimulatory signal that induces blood cluster of differentiation (CD8+ T cells to adopt a TRM-like phenotype. These cells express CD103 (integrin αE) and CD69, the two major TRM cell-surface markers, along with CD101. They also express C-C motif chemokine receptors 5 (CCR5) , C-C motif chemokine receptors 9 (CCR9), and α4ß7, three receptors associated with gut homing. A subset also expresses E-cadherin, a ligand for αEß7. Fluorescent lifetime imaging indicated an αEß7 and E-cadherin cis interaction on the plasma membrane. This report advances our understanding of the signals that drive the differentiation of CD8+ T cells into resident memory T cells and provides a means to expand these cells in vitro, thereby affording an avenue to generate more effective tissue-specific immunotherapies.

2.
Biopolymers ; 73(5): 556-68, 2004 Apr 05.
Article in English | MEDLINE | ID: mdl-15048779

ABSTRACT

The cyclic peptide AF17121 (Ac-VDECWRIIASHTWFCAEE) that inhibits interleukin 5 (IL-5) function and IL-5 receptor alpha-chain (IL-5Ralpha) binding has been derived from recombinant random peptide library screening and follow-up synthetic variation. To better understand the structural basis of its antagonist activity, AF17121 and a series of analogs of the parent peptide were prepared by solid phase peptide synthesis. Sequence variation was focused on the charged residues Asp(2), Glu(3), Arg(6), Glu(17), and Glu(18). Two of those residues, Glu(3) and Arg(6), form an EXXR motif that was found to be common among library-derived IL-5 antagonists. The E and R in the EXXR motif have a proximity similar to charged residues in a previously identified receptor alpha binding region, the beta-strand between the C- and D-helices of human IL-5. Optical biosensor interaction kinetics and cell proliferation assays were used to evaluate the antagonist activities of the purified synthetic peptides, by measuring competition with the highly active single chain IL-5. Analogs in which acidic residues (Asp(2), Glu(3), Glu(17), and Glu(18)) were replaced individually by Ala retained substantial competition activity, with multiple replacements in these residues leading to fractional loss of potency at most. In contrast, R6A analogs had strongly reduced competition activity. The results reveal that the arginine residue is crucial for the IL-5Ralpha binding of AF17121, while the acidic residues are not essential though likely complex-stabilizing particularly in the Asp(2)-Glu(3) region. By CD, AF17121 exhibited mostly disordered structure with evidence for a small beta-sheet content, and replacement of the arginine had no influence on the observed secondary structure of the peptides. The dominance of Arg(6) in AF17121 activity corresponds to previous findings of dominance of the positive charge balance in the antiparallel beta-sheet of IL-5 composed of (88)EERRR(92) in one strand of the CD turn region of IL-5 and with Arg(32) in the neighboring beta-strand. These results argue that AF17121 and related library-derived peptides function by mimicking the CD turn receptor alpha recognition epitope in IL-5 and open the way to small molecule antagonist design.


Subject(s)
Interleukin-5/antagonists & inhibitors , Peptides, Cyclic/chemistry , Receptors, Interleukin/chemistry , Amino Acid Sequence , Binding Sites , Binding, Competitive , Epitopes , Humans , Molecular Mimicry , Protein Structure, Secondary , Receptors, Interleukin-5 , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...