Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Strength Cond Res ; 31(2): 445-450, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28125546

ABSTRACT

Rylands, LP, Hurst, HT, Roberts, SJ, and Graydon, RW. The effect of "pumping" and "nonpumping" techniques on velocity production and muscle activity during field-based BMX cycling. J Strength Cond Res 31(2): 445-450, 2017-The aim of the current study was to determine if a technique called "pumping" had a significant effect on velocity production in Bicycle Motocross (BMX) cycling. Ten National standard male BMX riders fitted with surface electromyography (sEMG) sensors completed a timed lap of an indoor BMX track using the technique of pumping, and a lap without pumping. The lap times were recorded for both trials and their surface sEMG was recorded to ascertain any variation in muscle activation of the biceps brachii, triceps brachii, vastus lateralis, and medial gastrocnemius. The findings revealed no significant differences between any of muscle groups (p > 0.05). However, significant differences (p < 0.001) were observed between the pumping and nonpumping trials for both mean lap velocity (42 ± 1.8 km·h, 33 ± 2.9 km·h, respectively) and lap times (43.3 ± 3.1 seconds, 34.7 ± 1.49 seconds, respectively). The lap times recorded for the pumping trials were 19.50 ± 4.25% lower than the nonpumping, whereas velocity production was 21.81 ± 5.31% greater in the pumping trial compared with the nonpumping trial. The technique of pumping contributed significantly to velocity production, although not at the cost of additional muscle activity. From a physiological and technical perspective, coaches and riders should prioritize this technique when devising training regimes.


Subject(s)
Bicycling/physiology , Muscle, Skeletal/physiology , Adult , Electromyography , Humans , Male , Musculoskeletal Physiological Phenomena , Quadriceps Muscle/physiology , Young Adult
2.
J Sports Sci ; 35(14): 1372-1376, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27477519

ABSTRACT

The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min-1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders' mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min-1 with lower peak power produced at 80 revs · min-1 (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η2 = 0.960), 120 revs · min-1 (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η2 = 0.970) and 140 revs · min-1 (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η2 = 0.989). The shortest time to power production was attained at 120 revs · min-1 in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min-1 (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η2 = 0.800) 100 revs · min-1 (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η2 = 0.974) and 140 revs · min-1 (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η2 = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Biomechanical Phenomena , Humans , Male , Task Performance and Analysis , Time Factors , Young Adult
3.
Eur J Sport Sci ; 17(2): 127-131, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27485288

ABSTRACT

The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Biomechanical Phenomena/physiology , Adult , Humans , Male , Time Factors , Torque , Young Adult
4.
J Strength Cond Res ; 29(9): 2635-40, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26313579

ABSTRACT

The aim of this study was to ascertain the variation in elite male bicycle motocross (BMX) cyclists' peak power, torque, and time of power production during laboratory and field-based testing. Eight elite male BMX riders volunteered for the study, and each rider completed 3 maximal sprints using both a Schoberer Rad Messtechnik (SRM) ergometer in the laboratory and a portable SRM power meter on an Olympic standard indoor BMX track. The results revealed a significantly higher peak power (p ≤ 0.001, 34 ± 9%) and reduced time of power production (p ≤ 0.001, 105 ± 24%) in the field tests when compared with laboratory-derived values. Torque was also reported to be lower in the laboratory tests but not to an accepted level of significance (p = 0.182, 6 ± 8%). These results suggest that field-based testing may be a more effective and accurate measure of a BMX rider's peak power, torque, and time of power production.


Subject(s)
Bicycling/physiology , Muscle Strength/physiology , Ergometry , Humans , Male , Time Factors , Torque , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...