Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biometrics ; 79(4): 3038-3049, 2023 12.
Article in English | MEDLINE | ID: mdl-36988158

ABSTRACT

This work considers targeted maximum likelihood estimation (TMLE) of treatment effects on absolute risk and survival probabilities in classical time-to-event settings characterized by right-censoring and competing risks. TMLE is a general methodology combining flexible ensemble learning and semiparametric efficiency theory in a two-step procedure for substitution estimation of causal parameters. We specialize and extend the continuous-time TMLE methods for competing risks settings, proposing a targeting algorithm that iteratively updates cause-specific hazards to solve the efficient influence curve equation for the target parameter. As part of the work, we further detail and implement the recently proposed highly adaptive lasso estimator for continuous-time conditional hazards with L1 -penalized Poisson regression. The resulting estimation procedure benefits from relying solely on very mild nonparametric restrictions on the statistical model, thus providing a novel tool for machine-learning-based semiparametric causal inference for continuous-time time-to-event data. We apply the methods to a publicly available dataset on follicular cell lymphoma where subjects are followed over time until disease relapse or death without relapse. The data display important time-varying effects that can be captured by the highly adaptive lasso. In our simulations that are designed to imitate the data, we compare our methods to a similar approach based on random survival forests and to the discrete-time TMLE.


Subject(s)
Algorithms , Models, Statistical , Humans , Likelihood Functions , Machine Learning , Recurrence
2.
Stat Med ; 42(10): 1542-1564, 2023 05 10.
Article in English | MEDLINE | ID: mdl-36815690

ABSTRACT

Linkage between drug claims data and clinical outcome allows a data-driven experimental approach to drug repurposing. We develop an estimation procedure based on generalized random forests for estimation of time-point specific average treatment effects in a time-to-event setting with competing risks. To handle right-censoring, we propose a two-step procedure for estimation, applying inverse probability weighting to construct time-point specific weighted outcomes as input for the generalized random forest. The generalized random forests adaptively handle covariate effects on the treatment assignment by applying a splitting rule that targets a causal parameter. Using simulated data we demonstrate that the method is effective for a causal search through a list of treatments to be ranked according to the magnitude of their effect on clinical outcome. We illustrate the method using the Danish national health registries where it is of interest to discover drugs with an unexpected protective effect against relapse of severe depression.


Subject(s)
Random Forest , Humans , Probability
3.
Lifetime Data Anal ; 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36336732

ABSTRACT

Targeted maximum likelihood estimation (TMLE) provides a general methodology for estimation of causal parameters in presence of high-dimensional nuisance parameters. Generally, TMLE consists of a two-step procedure that combines data-adaptive nuisance parameter estimation with semiparametric efficiency and rigorous statistical inference obtained via a targeted update step. In this paper, we demonstrate the practical applicability of TMLE based causal inference in survival and competing risks settings where event times are not confined to take place on a discrete and finite grid. We focus on estimation of causal effects of time-fixed treatment decisions on survival and absolute risk probabilities, considering different univariate and multidimensional parameters. Besides providing a general guidance to using TMLE for survival and competing risks analysis, we further describe how the previous work can be extended with the use of loss-based cross-validated estimation, also known as super learning, of the conditional hazards. We illustrate the usage of the considered methods using publicly available data from a trial on adjuvant chemotherapy for colon cancer. R software code to implement all considered algorithms and to reproduce all analyses is available in an accompanying online appendix on Github.

SELECTION OF CITATIONS
SEARCH DETAIL