Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e31154, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813210

ABSTRACT

In this study, we estimated the contributions of carbonate mineral weathering to dissolved inorganic carbon (DIC) and carbonate-derived DIC to autochthonous particulate organic carbon (POC) in two temperate Korean rivers. We combined stoichiometric and stable carbon isotopic approaches to calculate the contribution of autochthonous POC, considering diverse riverine DIC sources. We collected surface water samples from May 2016 to May 2018 and analyzed the major ion composition of rivers along with the concentrations and stable carbon isotopes of DIC. Our estimates showed that the relative abundances of carbonate mineral weathering (0.41 ± 0.11 in the Geum River and 0.43 ± 0.07 in the Seomjin River) were only slightly lower than those of silicate mineral weathering (0.59 ± 0.1 in the Geum River and 0.57 ± 0.07 in the Seomjin River). The resulting percentage contributions of DIC derived from the carbonate mineral weathering to riverine autochthonous POC, if we consider the additional DIC sources of atmospheric and soil-derived CO2, were 10 ± 3 % in the Geum River and 2 ± 1 % in the Seomjin River. The calculated annual fluxes of carbonate-derived DIC for 2016-2018 were 23.2 ± 0.3 Gg C yr-1 in the Geum River and 1.1 ± 0.4 Gg C yr-1 in the Seomjin River. Moreover, the calculated annual fluxes of carbonate-derived POC were 3.6 ± 0.5 Gg C yr-1 in the Geum River and 0.1 ± 0.7 Gg C yr-1 in the Seomjin River. Accordingly, our study provides the first insight into the contribution of carbonate-derived DIC to riverine autochthonous POC in small temperate Korean river systems, dominated by silicate rocks.

2.
Front Microbiol ; 14: 1231839, 2023.
Article in English | MEDLINE | ID: mdl-37700860

ABSTRACT

The sea-level rise during the Holocene (11-0 ky BP) and its resulting sedimentation and biogeochemical processes may control microbial life in Arctic sediments. To gain further insight into this interaction, we investigated a sediment core (up to 10.7 m below the seafloor) from the Chuckchi Shelf of the western Arctic Ocean using metabarcoding-based sequencing and qPCR to characterize archaeal and bacterial 16S rRNA gene composition and abundance, respectively. We found that Arctic Holocene sediments harbor local microbial communities, reflecting geochemical and paleoclimate separations. The composition of bacterial communities was more diverse than that of archaeal communities, and specifically distinct at the boundary layer of the sulfate-methane transition zone. Enriched cyanobacterial sequences in the Arctic middle Holocene (8-7 ky BP) methanogenic sediments remarkably suggest past cyanobacterial blooms. Bacterial communities were phylogenetically influenced by interactions between dispersal limitation and environmental selection governing community assembly under past oceanographic changes. The relative influence of stochastic and deterministic processes on the bacterial assemblage was primarily determined by dispersal limitation. We have summarized our findings in a conceptual model that revealed how changes in paleoclimate phases cause shifts in ecological succession and the assembly process. In this ecological model, dispersal limitation is an important driving force for progressive succession for bacterial community assembly processes on a geological timescale in the western Arctic Ocean. This enabled a better understanding of the ecological processes that drive the assembly of communities in Holocene sedimentary habitats affected by sea-level rise, such as in the shallow western Arctic shelves.

3.
Sci Total Environ ; 835: 155516, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35490812

ABSTRACT

Changes in the cryosphere extent (e.g., glacier, ice sheet, permafrost, and snow) have been speculated to impact (bio)geochemical interactions and element budgets of seawater and pore fluids in Arctic regions. However, this process has rarely been documented in Arctic fjords, which leads to a poor systematic understanding of land-ocean interactions in such a warming-susceptible region. Here, we present the chemical and isotopic (δ18O, δD, δ11B, and 87Sr/86Sr) compositions of seawater and pore fluids from five fjords in the Svalbard archipelago. Compared to bottom seawater, the low Cl- concentrations and depleted water isotopic signatures (δ18O and δD) of surface seawater and pore fluids delineate freshwater discharge originating from precipitation and/or meltwater of the cryosphere (i.e., glacier, snow, and permafrost). In contrast, the high Cl- concentrations with light water isotopic values in pore fluids from Dicksonfjorden indicate a brine probably resulted from submarine permafrost formation during the late Holocene, a timing supported by the numerical simulation of dissolved Cl- concentration. The freshwater is influenced by the local diagenetic processes such as ion exchanges indicated by δ11B signatures as well as interactions with bedrock during fluid migration inferred from pore fluid 87Sr/86Sr ratios. The interactions with bedrock significantly alter the hydrogeochemical properties of pore fluids in each fjord, yielding spatiotemporal variations. Consequently, land-ocean interactions in combination with the hydrosphere-cryosphere-lithosphere are critical factors for understanding and predicting the hydrology and elemental cycling during global climate change periods in the past, present, and future of the Svalbard archipelago.


Subject(s)
Environmental Monitoring , Estuaries , Fresh Water , Svalbard , Water
4.
Environ Pollut ; 292(Pt A): 118339, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34637824

ABSTRACT

Non-exhaust emissions (e.g., particles from brake pads, asphalt, curb, road paint, tire) are important sources of potentially toxic elements (PTEs) pollution in urban environments and are potential causes of PTEs pollution in road dust. We present the PTEs concentrations (Cr, Ni, Cu, Zn, As, Cd, Sn, Sb, Pb) of non-exhaust emission sources and pollution degree of PTEs. Isotopic signatures of Cu, Zn, and Pb were also analyzed to distinguish these sources. Among PTEs, the Cu concentration in all brake pads was significantly high and brake pads from Korea showed remarkably high Sb concentrations. Asphalt had a higher Pb concentration than other non-exhaust emission sources. Mean of δ65CuAE647, δ66ZnIRMM3702, and 206Pb/207Pb values of non-exhaust emission sources in this study ranged from -0.49‰ to +0.19‰, -0.24‰ to +0.16‰, and 1.1535 to 1.4471, respectively. Non-exhaust emission sources could be discriminated by plotting the concentration and isotopic composition of Cu. Cu isotopic compositions (δ65CuAE647) were clearly distinguished between brake pads including domestic and imported products and tires. Zn isotope values (δ66ZnIRMM3702) of brake pads, tires, and asphalt overlapped, but discriminated from road paint and curb. Our results indicate that the combination of Cu and Zn isotopic signatures can distinguish various non-exhaust traffic emissions, especially brake pads and tires.


Subject(s)
Lead , Metals, Heavy , Dust/analysis , Environmental Monitoring , Environmental Pollution , Isotopes , Metals, Heavy/analysis , Risk Assessment , Zinc
5.
Article in English | MEDLINE | ID: mdl-33652565

ABSTRACT

This study analyzed the correlation between elementary school students' body composition, physical activity, physical fitness, movement ability, and academic achievement. Movements ranged from simple actions to complex movements requiring executive functioning. In total, 110 fourth graders (60 boys, 50 girls) participated in this experiment. Body composition (BMI, % of body fat), physical activity (pedometer), physical fitness (muscular strength, endurance, power, flexibility, and VO2max), and complex movement abilities (Illinois Agility test, soda pop hand test, and soda pop foot test) were measured. Regression modeling of body composition and fitness/activity variables was able to account for 30.5% of the variation of total academic scores in females, but only 4.3% in males. No individual tests were reliably correlated with multiple academic outcomes in males. However, hand and foot soda pop times, as well as Illinois Agility scores, were repeatedly correlated with academic outcomes in females, each correlating with 4 of the 6 academic scores. Body composition and physical activity level did not correlate with academic achievement, and simple physical fitness showed a low correlation with academic achievement in both boys and girls. On the other hand, complex, cognitively demanding movements such as the Illinois Agility, soda pop hand, and soda pop foot tests had consistent correlations with academic achievement in girls, but not in boys.


Subject(s)
Academic Success , Educational Status , Female , Humans , Illinois , Male , Mitochondrial Proton-Translocating ATPases , Physical Fitness
6.
Brain Sci ; 10(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138104

ABSTRACT

Mild cognitive impairment (MCI) generally refers to impairment in cognition above that which accompanies the normal age-related cognitive decline and has attracted attention in recent years. Trans-cinnamaldehyde (TCA), which is isolated from cinnamon, has anti-inflammatory and antioxidant properties. Treadmill exercise also has diverse positive effects. The purpose of this study was to investigate the combination effects of TCA and treadmill exercise on learning and memory in a cognitive impairment mouse induced by a combination of d-galactose (d-gal) and aluminum chloride (AlCl3). We found that exercise and TCA attenuated cognitive impairment in mice with induced MCI. This effect was further increased by costimulation of exercise and TCA. To clarify the mechanisms of the positive effects of TCA and exercise, we analyzed the nuclear factor erythroid 2-related factor (Nrf2) and related signaling pathways. We found that TCA and exercise upregulated Nrf2, NAD(P)H dehydrogenase quinone 1 (NQO-1), heme oxygenase 1 (HO-1), and superoxide dismutase 1 (SOD-1); this suggests that TCA and exercise attenuate cognitive dysfunction by reducing oxidative stress. We also found that Nrf2-related signaling pathways, i.e., the AMP-activated protein kinase (AMPK)/Nrf2 and SIRT1/PGC-1a/Nrf2-ARE pathways, exerted antioxidant effects. Together, these results suggest that costimulation with TCA and exercise may be a therapeutic candidate for mild cognitive impairment.

7.
Water Res ; 187: 116442, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33011565

ABSTRACT

In this study, we newly investigated surface water samples collected in two contrasting Korean estuary systems (i.e., closed Geum and open Seomjin estuaries) along a salinity gradient in winter (December) in 2016. The main objectives were to determine the source of particulate organic carbon (POC) in winter and to assess the environmental factors inducing seasonal differences in POC characteristics. Concentrations and dual carbon isotopes (δ13C and Δ14C) of POC were analyzed together with concentrations and stable carbon isotopes (δ13C) of dissolved inorganic carbon (DIC) and compared with those obtained in summer (August) in 2016. Our study provided a new insight that for both estuarine systems, the seasonal contrast in POC characteristics was associated with stronger wind-induced estuarine sediment resuspensions in winter than in summer providing a greater contribution of aged POC to the total POC pool in winter.


Subject(s)
Estuaries , Geum , Carbon/analysis , Carbon Isotopes/analysis , Environmental Monitoring , Republic of Korea , Rivers , Seasons
8.
Eur J Pharmacol ; 884: 173416, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32721448

ABSTRACT

Severe neuroinflammation is known as a main pathology of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In these diseases, excessive microglial activation is one of the main causes of inflammation in the central nervous system. Therefore, inhibition of activated microglia may be suggested as a treatment for neuroinflammatory diseases. Glibenclamide, known as a therapeutics for type 2 diabetes in clinical trials has been shown to be effective in the inhibiting inflammatory conditions of various diseases. However, studies on the effects of glibenclamide for improving AD pathologies are little known. In this study, we tested glibenclamide on microglial cell line BV2 and 5XFAD mice. We found that glibenclamide significantly inhibited nitric oxide (NO) at 10 µM and 40 µM in BV2 cells induced by lipopolysaccharide (LPS) stimulation. In addition, we confirmed that 40 µM of glibenclamide reduced pro-inflammatory cytokines and proteins in the LPS-stimulated microglial cells. The anti-inflammatory effect of glibenclamide was further tested in APP/PS1 transgenic mouse. Although further analysis would be needed to confirm whether glibenclamide affects behavioral performance, our data suggests that glibenclamide may be a therapeutic option for AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Glyburide/pharmacology , Microglia/drug effects , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Brain/physiopathology , Cell Line , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Inflammation Mediators/metabolism , Male , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Mitogen-Activated Protein Kinases/metabolism , Morris Water Maze Test/drug effects , Mutation , NF-kappa B/metabolism , Nitric Oxide/metabolism , Presenilin-1/genetics
9.
J Environ Manage ; 258: 110030, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31929066

ABSTRACT

The greenhouse effect is closely related to elevated atmospheric CO2 concentrations and therefore, carbon capture and storage (CCS) has attracted attention worldwide as a method for preventing the release of CO2 into the atmosphere, which highlights the importance of monitoring CO2 released from subsurface deposits. In this study, CO2 gas with a δ13C value of -30‰ was injected into soil through pipes installed at a depth of 2.5 m, and samples of CO2 gas released from the soil surface and three soil depths were collected from September 2015 to March 2016 to estimate subsurface CO2 movement. Before and after CO2 injection, the δ13C values of CO2 released from the soil surface ranged from -24.5 to -13.4‰ (average -20.2 ± 2.1‰, n = 25) and from -31.6 to -11.9‰ (average -23.2 ± 4.3‰, n = 49), respectively. The results indicated that the leakage of injected CO2 was successfully detected at the surface. The δ13C values were visualized using an interpolation map to estimate the subsurface CO2 distribution, which confirmed that diffusion of the injected CO2 gas extended to the soil zone where CO2 was not injected. Additionally, variation in δ13C for soil CO2 was detected at the three soil depths (15, 30, and 60 cm), where the values were -16.1, -20.0, and -22.1‰, respectively. Different δ13C values horizontally and vertically indicated that soil heterogeneity led to different CO2 migration pathways and rates. We suggest that the carbon isotope ratio of CO2 is an effective tool for concurrently monitoring CO2 leakage on and under surface in a soil zone if a thorough baseline study is carried out in the field.


Subject(s)
Carbon Dioxide , Soil , Atmosphere , Carbon Isotopes , Republic of Korea
10.
Mar Pollut Bull ; 150: 110719, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31732177

ABSTRACT

We investigated the source, composition, and reactivity of particulate organic carbon (POC) in two contrasting Korean estuary systems, a closed estuary (Geum) (i.e., with an estuary dam at the river mouth) and an open (Seomjin) estuary. A dual isotope (δ13CPOC and Δ14CPOC) approach was applied to surface water samples collected along a salinity gradient in August 2016. Our results indicate that phytoplankton-derived POC was the main contributor to the total POC pool in the reservoir of the Geum estuary, while terrestrial-derived POC predominated the upper Seomjin estuary. A simple binary mixing model using Δ14CPOC revealed a higher modern POC contribution (87-90%) in the Geum estuary reservoir than that (77%) of the upper Seomjin estuary. Accordingly, it appears that an estuary dam can alter the source and reactivity of POC in a reservoir, which can be transferred to the adjacent coastal ecosystem.


Subject(s)
Carbon Isotopes , Environmental Monitoring , Estuaries , Geum , Carbon , Ecosystem , Republic of Korea , Rivers
11.
Nat Commun ; 10(1): 5371, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796732

ABSTRACT

The use of lithium (Li) has dramatically increased during the last two decades due to the proliferation of mobile electronic devices and the diversification of electric-powered vehicles. Lithium is also prescribed as a medication against bipolar disorder. While Li can exert a toxic effect on living organisms, few studies have investigated the impact of anthropogenic inputs on Li levels in the environment. Here we report Li concentrations and Li isotope compositions of river, waste and tap water, and industrial products from the metropolitan city of Seoul. Results show that the large increase in population density in Seoul is accompanied by a large enrichment in aqueous Li. Lithium isotopes evidence a major release from Li-rich materials. Water treatment protocols are also shown to be inefficient for Li. Our study therefore highlights the need for a global Li survey and adequate solutions for minimizing their impact on ecosystems and city dwellers.

12.
Environ Int ; 133(Pt A): 105126, 2019 12.
Article in English | MEDLINE | ID: mdl-31518934

ABSTRACT

In this study, surface water samples were collected at sites located in the lowest reaches of closed (Geum) (i.e. with an estuary dam at the river mouth) and open (Seomjin) estuary systems between May 2016 and May 2018. We analyzed concentrations and stable isotopes of particulate organic carbon (POC) and dissolved organic carbon (DOC) to assess OC sources, to estimate fluxes of riverine OC, and to assess some of the factors driving OC exports in these two contrasting Korean estuary systems. Our geochemical results suggest that the contribution of the phytoplankton-derived POC to the total POC pool was larger in the Geum River than in the Seomjin River. Notably, a heavy riverine algae bloom occurred in the Geum River in August 2016, resulting in a high carbon isotopic composition (-19.4‰) together with low POC/PN ratio (<10) and POC/Chl-a ratio (<100). In contrast, potential DOC sources in both the Geum River and the Seomjin River were a mixture of C3-derived forest soils and cropland organic matter. During the study period, the catchment area-normalized fluxes of POC and DOC were 0.40 × 10-3 tC/km2/yr and 6.5 × 10-2 tC/km2/yr in the Geum River and 5.2 × 10-4 tC/km2/yr and 8.6 × 10-4 tC/km2/yr in the Seomjin River, respectively. It appears that the POC flux was more weakly associated with the water discharge in the Geum River than in the Seomjin River, but the DOC fluxes were in general controlled by the water discharges in both rivers. Accordingly, the estuary dam of the Geum River might be one of the most strongly influencing factors on seasonal patterns in POC fluxes into the adjacent coastal seas, strongly modifying water residence times and thus biogeochemical processes.


Subject(s)
Rivers/chemistry , Water Pollutants, Chemical/analysis , Carbon/analysis , Carbon Isotopes , Environmental Monitoring , Estuaries , Eutrophication , Phytoplankton , Republic of Korea
13.
Rapid Commun Mass Spectrom ; 32(21): 1843-1850, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30074644

ABSTRACT

RATIONALE: While global pork production has grown exponentially in recent decades to 109 Mt in 2010, methods aimed at verifying the geographic origin of pork products have yet to be thoroughly investigated. Here, we analyzed pork samples available in South Korea in order to discriminate their geographic origin. METHODS: A total of the 37 pork samples originated from South Korea and other countries (Denmark, Germany, France, Spain, Canada and Mexico) were collected in order to classify their geographic origins using multi-isotope ratios, such as δ18 O, δ2 H, δ13 C, δ15 N values measured by IRMS, 87 Sr/86 Sr ratios measured by MC-ICP-MS, and multivariate statistical approaches. RESULTS: There is a wide range of 87 Sr/86 Sr ratios in the pork samples, varying from 0.70779 to 0.71245, due to the lithology where the pork was raised. Canadian samples displayed the lowest δ18 O and δ2 H values mainly due to the latitude effect. Furthermore, the δ13 C values of European and Canadian samples were lower than those of Korean and Mexican samples, depending on whether the feed was composed of either C3 or C4 plants. The δ15 N values of the European and Canadian samples were much higher than those of the other samples, possibly resulting from the δ15 N values of the feed. CONCLUSIONS: While differences in pork samples were observed that depended on geographic origin, this study suggests that more detailed investigations are needed to validate whether a combination of multi-isotope and multivariate statistical approaches is a valid method for determining the geographic origin of pork.

14.
J Environ Qual ; 46(3): 559-567, 2017 May.
Article in English | MEDLINE | ID: mdl-28724098

ABSTRACT

Organic fertilizers are increasingly used in agriculture in Asia and elsewhere. Tracer techniques are desirable to distinguish the fate of nutrients added to agroecosystems with organic fertilizers from those contained in synthetic fertilizers. Therefore, we determined the nitrogen, sulfur, and oxygen isotope ratios of nitrogen- and sulfur-bearing compounds in animal- and plant-based organic fertilizers (ABOF and PBOF, respectively) used in South Korea to evaluate whether they are isotopically distinct. The δN values of total and organic nitrogen for ABOF ranged from +7 to +19‰ and were higher than those of PBOF (generally <+6‰). This suggests that ABOFs have distinct δN values suitable for tracing these fertilizer compounds in the plant-soil-water system, whereas PBOFs have similar δN values to synthetic fertilizers. However, δO values for nitrate (δO) from organic fertilizer samples (<+17.0‰) were consistently lower than those of synthetic nitrate-containing fertilizers. The δS values of total sulfur, organic sulfur compounds (e.g., carbon-bonded sulfur and hydriodic acid-reducible sulfur), and sulfate for ABOFs yielded wide and overlapping ranges of +0.3 to +6.3, +0.9 to +7.2, and -2.6 to +14.2‰, whereas those for PBOFs varied from -3.4 to +7.7, +1.4 to +9.4, and -4.1 to +12.5‰, respectively, making it challenging to distinguish the fate of sulfur compounds from ABOF and PBOF in the environment using sulfur isotopes. We conclude that the δN values of ABOFs and the O values of organic fertilizers are distinct from those of synthetic fertilizers and are a promising tool for tracing the fate of nutrients added by organic fertilizers to agroecosystems.


Subject(s)
Fertilizers , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Sulfur Isotopes/analysis , Animals , Nitrogen , Plants , Republic of Korea , Sulfur
15.
Chemosphere ; 172: 155-165, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28068567

ABSTRACT

Rare earth elements (REE) consist of lanthanides (from La to Lu), together with yttrium and scandium, in which anthropogenic REE, such as gadolinium (Gd), lanthanum (La), and samarium (Sm), has emerged as micro-contaminants in natural waters in highly developed countries. Here, we collected water samples in the Han River (HR) and its tributaries flowing through Seoul Capital Area, the world's second largest metropolitan area in order to examine how and to what extent anthropogenic REE anomalies may occur. Water samples show higher light REE concentrations than heavy REE concentrations, while wastewater treatment plant (WWTP) samples display much higher heavy REE concentrations due to high Gd concentration. The PAAS-normalized REE patterns indicate that WWTP samples display the pronounced positive Gd anomalies, in which anthropogenic Gd from magnetic resonance imaging (MRI) diagnostic system occurs as a form of Gd complexation with either Cl- or SO42-. Due to the WWTP, both the HR and tributaries show also positive Gd anomalies and the anthropogenic Gd concentrations increase as a function of the distance from the Paldang dam. This result indicates a positive correlation between populaton, number of MRI instruments, and positive Gd anomaly. Similarly, positive La and Sm anomalies exist in the HR, indicating that the HR is also affected by their point sources. Based on the discharge rate and anthropogenic REE concentrations, their fluxes are estimated to be 952 ± 319 kg/yr, suggesting that this amount of fluxes could disturb REE distribution in the Yellow Sea, and pose harmful effects on aquatic ecosystems.


Subject(s)
Environmental Monitoring/methods , Metals, Rare Earth/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Ecosystem , Gadolinium/analysis , Lanthanum/analysis , Samarium/analysis , Seoul
16.
Rapid Commun Mass Spectrom ; 30(13): 1612-8, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27321849

ABSTRACT

RATIONALE: Fragments of glass from cars are often found at crime scenes and can be crucial evidence for solving the crime. The glass fragments are important as trace evidence at crime scenes related to car accidents and burgled homes. By identifying the origin of glass fragments, it is possible to infer the identity of a suspect. Our results represent a promising approach to a thorough forensic investigation of car glass. METHODS: Thirty-five samples from the side windows of cars produced and used in South Korea were collected from the official agencies of five car manufacturers and from two glassmakers. In addition, 120 samples from side mirrors were collected from the same suppliers as well as from small businesses. Their chemical compositions (including Pb isotopes) were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and linear discriminant analysis (LDA) was performed. RESULTS: The percentages of major elements (Si, Ca, and Fe) in side-window glass varied within narrow ranges (30.0 ± 2.36%, 5.93 ± 0.52%, and 0.33 ± 0.05%, respectively), while the differences among Pb isotope ratios were not significant. In contrast, light rare earth elements (LREEs) were different from each glassmaker. From the LDA, the types of side-window glass were successfully discriminated according to car manufacturer, glassmaker, and even glass thickness. However, glass from side mirrors cannot be used for good forensic identifiers. CONCLUSIONS: Discrimination techniques for side-window glass, although not for side mirrors, using chemical compositions combined with multivariate statistical analyses provide evidence for forensic investigations. Copyright © 2016 John Wiley & Sons, Ltd.

17.
J Agric Food Chem ; 62(38): 9232-8, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25186083

ABSTRACT

The geographical origin of agricultural products has been intensively studied, but links between agricultural products and the environments are poorly established. Soils, water (streamwater and groundwater), and plants (hot pepper, Capsicum annuum; and rice, Oryza sativa) were collected from all regions of South Korea and measured Sr isotope ratios ((87)Sr/(86)Sr). Sequential leaching of soil showed that Sr in the exchangeable and carbonate fractions (bioavailable) had a lower (87)Sr/(86)Sr ratio than that in the silicate fraction, consistent with a low (87)Sr/(86)Sr ratio in the plant. Although the bedrock-soil-water-plant system is closely linked, statistical analysis indicated that (87)Sr/(86)Sr ratios of the plant showed the greatest agreement with those of water and the exchangeable fraction of soil. This study is the first report of (87)Sr/(86)Sr isoscapes in South Korea and first demonstrates that the agricultural product is strongly linked with the exchangeable fraction of soil and water.


Subject(s)
Capsicum/chemistry , Oryza/chemistry , Strontium Isotopes/analysis , Food Contamination, Radioactive/analysis , Republic of Korea , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
18.
Sci Total Environ ; 485-486: 270-280, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24727045

ABSTRACT

Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO3 were the dominant ions and total dissolved solids (TDS) was low (26.1-165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224-434 mg/L) and ion concentrations were typically higher, and Ca and SO4 were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ(34)SSO4 and δ(18)OSO4) verified that the SO4 in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ(15)NNO3 and δ(18)ONO3) indicated that NO3 in JS is attributable to nitrification of soil organic matter but that NO3 in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ(34)SSO4 and δ(15)NNO3. This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes controlling the water chemistry of streams draining watersheds having different lithologies and land-use patterns.


Subject(s)
Environmental Monitoring , Rivers/chemistry , Water Pollutants, Chemical/analysis , Mining , Republic of Korea
19.
Rapid Commun Mass Spectrom ; 26(1): 25-31, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22215574

ABSTRACT

A total of 54 Korean bottled waters were investigated to characterize their origins and types using elemental and isotopic composition, as well as to identify elemental and isotopic changes in desalinated marine water that arise due to desalination. The different types of bottled water displayed a wide pH range (3.42 to 7.21). The elemental compositions of still and sparkling waters were quite similar, whereas desalinated marine water was clearly distinguished by its high concentrations of Ca, Mg, B, and Cl. In addition, desalinated marine water had much higher isotope ratios of oxygen and hydrogen (-0.5 and -2‰, respectively) than still and sparkling waters (-8.4 and -57‰). The elemental composition of desalinated marine water was adjusted through post-treatment procedures; in particular, boron was greatly enriched during desalination processes. The carbon isotope compositions of dissolved inorganic carbon (δ(13)C(DIC) values) varied widely according to the origins of the bottled waters (-25.6 to -13.6‰ for still water, -31.2 to -26.7‰ for sparkling water, and -24.1 to -6.3‰ for desalinated marine water). This indicates that carbon isotopes in dissolved inorganic carbon are significantly fractionated by desalination processes and re-modified through post-treatment procedures. The results suggest that combined elemental and stable isotopic tracers are useful for identifying the origin of bottled water, verifying elemental and isotopic modifications during desalination processes, and characterizing various water types of bottled waters.

20.
Anal Chim Acta ; 631(2): 189-95, 2009 Jan 12.
Article in English | MEDLINE | ID: mdl-19084625

ABSTRACT

We analyzed the major elements and stable isotopes of oxygen, hydrogen, and carbon (dissolved inorganic carbon: DIC) in various types of bottled water (domestic and foreign) commercially available in South Korea to classify the water types and to identify their origins. Only marine waters and some sparkling waters could be discriminated by their physicochemical compositions. Oxygen and hydrogen isotopes made marine waters more distinguishable from other water types. The determination of the carbon isotope composition of DIC was clearly useful for distinguishing between naturally and artificially sparkling waters. In addition, statistical analysis also appeared to aid in the discrimination of bottled water types. Our results indicate that a method that combines chemical and stable isotope composition analysis with statistical analysis is the most useful for discriminating water types and characterizing the origins of bottled water.


Subject(s)
Beverages/analysis , Water/analysis , Water/chemistry , Carbon/chemistry , Commerce , Hydrogen/chemistry , Isotopes , Korea , Oxygen/chemistry , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...