Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(32): e2322863121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074276

ABSTRACT

The nitrogen isotopes of the organic matter preserved in fossil fish otoliths (ear stones) are a promising tool for reconstructing past environmental changes. We analyzed the 15N/14N ratio (δ15N) of fossil otolith-bound organic matter in Late Cretaceous fish otoliths (of Eutawichthys maastrichtiensis, Eutawichthys zideki and Pterothrissus sp.) from three deposits along the US east coast, with two of Campanian (83.6 to 77.9 Ma) and one Maastrichtian (72.1 to 66 Ma) age. δ15N and N content were insensitive to cleaning protocol and the preservation state of otolith morphological features, and N content differences among taxa were consistent across deposits, pointing to a fossil-native origin for the organic matter. All three species showed an increase in otolith-bound organic matter δ15N of ~4‰ from Campanian to Maastrichtian. As to its cause, the similar change in distinct genera argues against changing trophic level, and modern field data argue against the different locations of the sedimentary deposits. Rather, the lower δ15N in the Campanian is best interpreted as an environmental signal at the regional scale or greater, and it may be a consequence of the warmer global climate. A similar decrease has been observed in foraminifera-bound δ15N during warm periods of the Cenozoic, reflecting decreased water column denitrification and thus contraction of the ocean's oxygen deficient zones (ODZs) under warm conditions. The same δ15N-climate correlation in Cretaceous otoliths raises the prospect of an ODZ-to-climate relationship that has been consistent over the last ~80 My, applying before and after the end-Cretaceous mass extinction and spanning changes in continental configuration.


Subject(s)
Fishes , Fossils , Nitrogen Isotopes , Otolithic Membrane , Animals , Otolithic Membrane/chemistry , Otolithic Membrane/anatomy & histology , Nitrogen Isotopes/analysis , Fishes/metabolism , Fishes/anatomy & histology
2.
Environ Sci Technol ; 52(2): 731-738, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29303256

ABSTRACT

Atmospheric nitrous oxide (N2O) is a greenhouse gas and ozone-depleting substance whose emissions are substantially perturbed by current human activities. Although air trapped in polar ice cores can provide direct information about N2O evolution, analytical precision was not previously sufficient for high temporal resolution studies. In this work, we present a highly improved analytical technique with which to study N2O concentrations in ancient-air-trapped ice cores. We adopt a melt-refreezing method to extract air and use a gas chromatography-electron capture detector (GC-ECD) to determine N2O concentrations. The GC conditions are optimized to improve the sensitivity for detecting N2O. Retrapped N2O in ice during the extraction procedure is precisely analyzed and corrected. We confirmed our results using data from the Styx Glacier ice core in Antarctica by comparing them with the results of a dry-extraction method. The precision estimated from the pooled standard deviation of replicated measurements of the Styx ice core was 1.5 ppb for ∼20 g of ice, a smaller sample of ice than was used in previous studies, showing a significant improvement in precision. Our preliminary results from the Styx Glacier ice core samples have the potential to define small N2O variations (a few parts per billion) at centennial time scales.


Subject(s)
Ice Cover , Nitrous Oxide , Antarctic Regions , Chromatography, Gas , Humans , Intracellular Signaling Peptides and Proteins , Nuclear Proteins
SELECTION OF CITATIONS
SEARCH DETAIL