Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 10(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36551871

ABSTRACT

Currently, sensitive and specific methods for the detection and prognosis of early stage PCa are lacking. To establish the diagnosis and further identify an appropriate treatment strategy, prostate specific antigen (PSA) blood test followed by tissue biopsy have to be performed. The combination of tests is justified by the lack of a highly sensitive, specific, and safe single test. Tissue biopsy is specific but invasive and may have severe side effects, and therefore is inappropriate for screening of the disease. At the same time, the PSA blood test, which is conventionally used for PCa screening, has low specificity and may be elevated in the case of noncancerous prostate tumors and inflammatory conditions, including benign prostatic hyperplasia and prostatitis. Thus, diverse techniques of liquid biopsy have been investigated to supplement or replace the existing tests of prostate cancer early diagnosis and prognostics. Here, we provide a review on the advances in diagnosis and prognostics of non-metastatic prostate cancer by means of various biomarkers extracted via liquid biopsy, including circulating tumor cells, exosomal miRNAs, and circulating DNAs.

2.
Cancers (Basel) ; 14(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35884424

ABSTRACT

Prostate cancer (PCa) diagnosis is primarily based on prostate-specific antigen (PSA) testing and prostate tissue biopsies. However, PSA testing has relatively low specificity, while tissue biopsies are highly invasive and have relatively low sensitivity at early stages of PCa. As an alternative, we developed a technique of liquid biopsy, based on isolation of circulating tumor cells (CTCs) from seminal fluid (SF). The recovery of PCa cells from SF was demonstrated using PCa cell lines, achieving an efficiency and throughput as high as 89% (±3.8%) and 1.7 mL min-1, respectively, while 99% (±0.7%) of sperm cells were disposed of. The introduced approach was further tested in a clinical setting by collecting and processing SF samples of PCa patients. The yield of isolated CTCs measured as high as 613 cells per SF sample in comparison with that of 6 cells from SF of healthy donors, holding significant promise for PCa diagnosis. The correlation analysis of the isolated CTC numbers with the standard prognostic parameters such as Gleason score and PSA serum level showed correlation coefficient values at 0.40 and 0.73, respectively. Taken together, our results show promise in the developed liquid biopsy technique to augment the existing diagnosis and prognosis of PCa.

3.
J Pharm Sci ; 108(1): 358-363, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30439461

ABSTRACT

In this study, drug flux through microporated skin was modeled using detailed numerical solution of the diffusion equation. The results of the modeling were compared to previously published simplified and easy to use analytical equations. Limitations and accuracy of these equations were investigated. Appropriate modifications of the equations were identified to expand them to wider practical applications when pore shape is not circular. Numerical simulations have shown a good accuracy of the new simple equations when these are used within their limits of application.


Subject(s)
Models, Biological , Pharmaceutical Preparations/metabolism , Skin Absorption/physiology , Skin/metabolism , Administration, Cutaneous , Animals , Diffusion , Drug Delivery Systems , In Vitro Techniques , Permeability , Porosity , Skin/chemistry
4.
Cancers (Basel) ; 12(1)2019 Dec 29.
Article in English | MEDLINE | ID: mdl-31905736

ABSTRACT

During the last decade, isolation of circulating tumour cells via blood liquid biopsy of prostate cancer (PCa) has attracted significant attention as an alternative, or substitute, to conventional diagnostic tests. However, it was previously determined that localised forms of PCa shed a small number of cancer cells into the bloodstream, and a large volume of blood is required just for a single test, which is impractical. To address this issue, urine has been used as an alternative to blood for liquid biopsy as a truly non-invasive, patient-friendly test. To this end, we developed a spiral microfluidic chip capable of isolating PCa cells from the urine of PCa patients. Potential clinical utility of the chip was demonstrated using anti-Glypican-1 (GPC-1) antibody as a model of the primary antibody in immunofluorescent assay for identification and detection of the collected tumour cells. The microchannel device was first evaluated using DU-145 cells in a diluted Dulbecco's phosphate-buffered saline sample, where it demonstrated >85 (±6) % efficiency. The microchannel proved to be functional in at least 79% of cases for capturing GPC1+ putative tumour cells from the urine of patients with localised PCa. More importantly, a correlation was found between the amount of the captured GPC1+ cells and crucial diagnostic and prognostic parameter of localised PCa-Gleason score. Thus, the technique demonstrated promise for further assessment of its diagnostic value in PCa detection, diagnosis, and prognosis.

5.
Eur J Pharm Biopharm ; 127: 12-18, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29408519

ABSTRACT

The mathematical model describing drug flux through microporated skin was previously developed. Based on this model, two mathematical equations can be used to predict the microporatio-enhanced transdermal drug flux: the complex primal equation containing a variety of experimentally-determined variables, and the simplified straightforward equation. In this study, experimental transdermal fluxes of three corticosteroids through split-thickness human skin treated with a microneedle roller were measured, and the values of fluxes compared with those predicted using both the more complex and simplified equations. According to the results of the study, both equations demonstrated high accuracy in the prediction of the fluxes of corticosteroids. The simplified equation was validated and confirmed as robust using regression analysis of literature data. Further, its capability and ease of use was exemplified by predicting the flux of methotrexate through the skin microporated with laser and comparing with published experimental data.


Subject(s)
Adrenal Cortex Hormones/metabolism , Methotrexate/metabolism , Skin Absorption/physiology , Skin/metabolism , Administration, Cutaneous , Drug Delivery Systems/methods , Humans , Needles , Permeability/drug effects
6.
J Control Release ; 270: 184-202, 2018 01 28.
Article in English | MEDLINE | ID: mdl-29203415

ABSTRACT

Microneedles is the technique of drug delivery enhancement, which was primarily designed for facilitating percutaneous drug delivery. Started from the development of simple solid microneedles, providing microporation of stratum corneum and therefore enhancement of topical drug delivery, for two decades the technique has progressed in various modifications such as hollow, coated, dissolving and hydrogel forming microneedles. In their turn, the modifications have resulted in new mechanisms of drug delivery enhancement and followed by the expansion of applicability range in terms of targeted tissues and organs. Thus, in addition to percutaneous drug delivery, microneedles have been considered as an efficient technique facilitating ocular, oral mucosal, gastrointestinal, ungual and vaginal drug administration. It is anticipated that the technique of microneedle-assisted drug delivery will soon become relevant for majority of organs and tissues.


Subject(s)
Drug Delivery Systems , Microinjections , Needles , Animals , Drug Administration Routes , Humans
7.
J Control Release ; 241: 194-199, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27686580

ABSTRACT

A simple mathematical equation has been developed to predict drug flux through microporated skin. The theoretical model is based on an approach applied previously to water evaporation through leaf stomata. Pore density, pore radius and drug molecular weight are key model parameters. The predictions of the model were compared with results derived from a simple, intuitive method using porated area alone to estimate the flux enhancement. It is shown that the new approach predicts significantly higher fluxes than the intuitive analysis, with transport being proportional to the total pore perimeter rather than area as intuitively anticipated. Predicted fluxes were in good general agreement with experimental data on drug delivery from the literature, and were quantitatively closer to the measured values than those derived from the intuitive, area-based approach.


Subject(s)
Drug Delivery Systems/methods , Models, Biological , Pharmaceutical Preparations/administration & dosage , Skin/chemistry , Skin/metabolism , Animals , Humans , In Vitro Techniques , Laser Therapy , Needles , Permeability , Pharmaceutical Preparations/metabolism , Porosity , Predictive Value of Tests , Rats , Skin/ultrastructure , Skin Absorption , Swine
SELECTION OF CITATIONS
SEARCH DETAIL