Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 24(3): 1692-1701, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34982075

ABSTRACT

In the synthesis of metallic nanoparticles in microemulsions, we hypothesized that the particle size is controlled by the reaction rate and not by the microemulsion size. Thus, the changes observed in the particle sizes as reaction conditions, such as concentrations, temperatures, the type of surfactant used, etc., are varied which should not be correlated directly to the modification of these conditions but indirectly to the changes they produce in the reaction rates. In this work, the microemulsions were formulated with benzene and water as continuous and dispersed phases, respectively, using n-dodecyltrimethylammonium bromide (DTAB) and n-octanol as the surfactant and cosurfactant. Using time-resolved UV-vis spectroscopy, we measured the reaction rates in the production of palladium (Pd) nanoparticles inside the microemulsions at different reactant concentrations and temperatures, keeping all the other parameters constant. The measured reaction rates were then correlated with the particle sizes measured by transmission electron microscopy (TEM). We found that the nanoparticle size increases linearly as the reaction rate increases, independently of the actual reactant concentration or temperature. We proposed a simple model for the observed kinetics where the reaction rate is controlled mainly by the diffusion of the reducing agent. With this model, we predicted that the particle size should depend indirectly, via the reaction kinetics, on the micelle radius, the water volume and the total microemulsion volume. Some of these predictions were indeed observed and reported in the literature.

2.
Front Chem ; 10: 1116887, 2022.
Article in English | MEDLINE | ID: mdl-36704615

ABSTRACT

The synthesis and characterisation of new dyes based on indolizines bearing catechol groups in their structure is presented. The preparation was carried out through a simple three component one-pot reaction promoted by CuNPs/C, between pyridine-2-carbaldehyde, an aromatic alkyne and a tetrahydroisoquinoline (THIQ) functionalized with catechol groups. The products were isolated in 30%-34% yield, which was considered more than acceptable considering that the catechol hydroxyl groups were not protected prior to reaction. In view of the colour developed by the products and their response to the acidic and basic conditions of the medium, product 3aa was studied by UV-Vis and NMR spectroscopies at different pH values. We concluded that product 3aa suffered two deprotonations at pKa of 4.4 and 9.5, giving three species in a pH range between 2-12, with colours varying from light red to deep orange. The reversibility of the process observed for 3aa at different pH values, together with its changes in colour, make this new family of products attractive candidates to use them as pH indicators.

4.
ChemSusChem ; 5(4): 637-41, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22431491

ABSTRACT

ORR MNC, FTW! Mesoporous nitrogen-rich carbon (MNC) materials are synthesized by using polymer-loaded SBA-15 pyrolyzed at different temperatures. The activity and stability of the catalysts in the oxygen reduction reaction (ORR) are investigated by using cyclic voltammetry and rotating-disk electrode measurements. The MNC material pyrolyzed at 800 °C exhibits a high electrocatalytic activity towards the ORR in alkaline medium.


Subject(s)
Carbon/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Catalysis , Hydrogen-Ion Concentration , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Porosity
5.
J Nanosci Nanotechnol ; 11(9): 8152-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22097546

ABSTRACT

TiO2 was deposited on high surface area porous silica gel (400 m2g(-1)) in a fluidized bed reactor. Chemical vapor deposition was employed for the coating under vacuum conditions with TiCl4 as precursor. Nitrogen physisorption, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy were applied to characterize the obtained TiO2-SiO2 composites with different Ti loadings up to 5 wt%. Only a slight decrease in the specific surface area was detected at low Ti loadings. At a Ti loading of 2 wt%, TiO2 was found to be highly dispersed on the SiO2 surface likely in form of a thin film. At higher Ti loadings, two weak reflections corresponding to anatase TiO2 were observed in the diffraction patterns indicating the presence of crystalline bulk TiO2. High resolution XPS clearly distinguished two types of Ti species, i.e., Ti-O-Si at the interface and Ti-O-Ti in bulk TiO2. The presence of polymeric TiOx species at low Ti loadings was confirmed by a blue shift in the UV-vis spectra as compared to bulk TiO2. All these results point to a strong interaction between the TiO2 deposit and the porous SiO2 substrate especially at low Ti loadings.

6.
Anal Chem ; 83(6): 1916-23, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21329337

ABSTRACT

Thin film metal oxide material libraries were prepared by sputter deposition of nanoscale Ti/Nb precursor multilayers followed by ex situ oxidation. The metal composition was varied from 6 at.% Nb to 27 at.% Nb. Additionally, thin wedge-type layers of Pt with a nominal thickness gradient from 0 to 5 nm were sputter-deposited on top of the oxides. The materials libraries were characterized with respect to metallic film composition, oxide thickness, phases, electrical conductivity, Pt thickness, and electrochemical activity for the oxygen reduction reaction (ORR). Electrochemical investigations were carried out by cyclic voltammetry using an automated scanning droplet cell. For a nominal Pt thickness >1 nm, no significant dependence of the ORR activity on the Pt thickness or the substrate composition was observed. However, below that critical thickness, a strong decrease of the surface-normalized activity in terms of reduction currents and potentials was observed. For such thin Pt layers, the conductivity of the substrate seems to have a substantial impact on the catalytic activity. Results from X-ray photoelectron spectroscopy (XPS) measurements suggest that the critical Pt thickness coincides with the transition from a continuous Pt film into isolated particles at decreasing nominal Pt thickness. In the case of isolated Pt particles, the activity of Pt decisively depends on its ability to exchange electrons with the oxide layer, and hence, a dependence on the substrate conductivity is rationalized.

7.
J Colloid Interface Sci ; 292(1): 179-85, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16023658

ABSTRACT

The preparation of different samples of vanadia supported on ultrastable zeolite (VO(x)/USY) is discussed. The samples were prepared in order to obtain highly dispersed V-species, avoiding the formation of crystalline vanadia and the destruction of the zeolite framework. Two methods were employed for preparing VO(x)/USY samples: an organic route using V(AcAc)3 and an inorganic route using NH4VO3. The characterization of the samples was performed with XRD, TPR, NH3-TPD, and N2 isotherms. From these results it is concluded that when VO(x) is supported on the surface of USY from acidic aqueous solution of ammonium metavanadate, the destruction of the zeolite framework is accomplished. For higher pH values in the impregnating solution, undesired V2O5 is formed on the USY surface. On the other hand, VO(x)/USY prepared from the organic precursor shows no destruction of the USY structure. In addition, highly dispersed VO(x) are formed, though for relatively high V loadings (6%) an obstruction of the zeolite windows takes place. The samples are tested as catalysts for gas phase dehydrogenation of n-butane to olefins. The catalysts prepared from NH4VO3 are almost inactive for the reaction. On the other hand, both samples prepared from V(AcAc)3 present initial conversion levels in the 8-12% range. However, the selectivity depends on the V loading, the catalysts with 6% loading being the most selective (75%). The catalytic patterns of the samples (activity and selectivity) are in agreement with the physicochemical features of the VO(x)/USY surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...