Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39273562

ABSTRACT

Mauritia flexuosa (M. flexuosa), commonly known as Aguaje or Moriche palm, is traditionally recognised in South America for its medicinal properties, particularly for its anti-inflammatory and antioxidant effects. However, the bioactive compounds responsible for these effects have not been thoroughly investigated. This study aims to isolate and characterise pentacyclic triterpenoid compounds from M. flexuosa and to evaluate their therapeutic potential. Using various chromatographic and spectroscopic techniques including Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS), three pentacyclic triterpenoid compounds were successfully isolated. Among them, compound 1 (3,11-dioxours-12-en-28-oic acid) exhibited notable bioactivity, significantly inhibiting the activation of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) (IC50 = 7.39-8.11 µM) and of Nitric Oxide (NO) (IC50 = 4.75-6.59 µM), both of which are key processes in inflammation. Additionally, compound 1 demonstrated potent antioxidant properties by activating the antioxidant enzyme Superoxide Dismutase (SOD) (EC50 = 1.87 µM) and the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) (EC50 = 243-547.59 nM), thus showing its potential in combating oxidative stress. This study is the first to isolate and characterise the three compounds from M. flexuosa, suggesting that compound 1 could be a promising candidate for the development of safer and more effective therapies for inflammatory and oxidative stress-related diseases.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Pentacyclic Triterpenes , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Animals , Mice , RAW 264.7 Cells , Nitric Oxide/metabolism , NF-kappa B/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology
2.
Pharmaceutics ; 16(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39204439

ABSTRACT

This study reports for the first time the isolation of four diterpenoid compounds: 15-Hydroxy-12-oxo-abietic acid (1), 12α-hydroxyabietic acid (2), (-)-Jolkinolide E (3), and 15-Hydroxydehydroabietic acid (4) from Clinopodium bolivianum (C. bolivianum). The findings demonstrate that both the dichloromethane/methanol (DCMECB) extract of C. bolivianum and the isolated compounds exhibit significant anti-inflammatory (inhibition of NF-κB activation), antibacterial (primarily against Gram-positive bacteria), and anti-biofilm (primarily against Gram-negative bacteria) activities. Among the isolated diterpenes, compounds 3 and 4 showed notable anti-inflammatory effects, with IC50 values of 17.98 µM and 23.96 µM for compound 3, and 10.79 µM and 17.37 µM for compound 4, in the HBEC3-KT and MRC-5 cell lines. Regarding their antibacterial activity, compounds 3 and 4 were particularly effective, with MIC values of 0.53-1.09 µM and 2.06-4.06 µM, respectively, against the S. pneumoniae and S. aureus Gram-positive bacteria. Additionally, these compounds demonstrated significant anti-biofilm and anti-quorum sensing activities, especially against Gram-negative bacteria (H. influenzae and L. pneumophila). We also explain how compound 3 (BIC = 1.50-2.07 µM, Anti-QS = 0.31-0.64 µM) interferes with quorum sensing due to its structural homology with AHLs, while compound 4 (BIC = 4.65-7.15 µM, Anti-QS = 1.21-2.39 µM) destabilises bacterial membranes due to the presence and position of its hydroxyl groups. These results support the traditional use of C. bolivianum against respiratory infections caused by both Gram-positive and Gram-negative bacteria. Furthermore, given the increasing antibiotic resistance and biofilm formation by these bacteria, there is a pressing need for the development of new, more active compounds. In this context, compounds 3 and 4 isolated from C. bolivianum offer promising potential for the development of a library of new, more potent, and selective drugs.

3.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39065787

ABSTRACT

In our study, using chromatographic techniques, we isolated three bioactive compounds, which were structurally elucidated as (E)-2-(3-(3,4-dimethoxyphenyl)acrylamido)-N-methylbenzamide (1), 4-Hydroxyquinoline-2-carboxylic acid (2), and (E)-2-Cyano-3-(4-hydroxyphenyl)acrylic acid (3), using spectroscopic methods. The anti-melanogenic, anti-inflammatory, antioxidant, and anti-aging properties were evaluated in vitro by measuring the activity of pharmacological targets including tyrosinase, melanin, NF-κB, hyaluronidase, elastase, collagenase, and Nrf2. Our results show that compound 1 is the most active with IC50 values of 14.19 µM (tyrosinase inhibition), 22.24 µM (melanin inhibition), 9.82-12.72 µM (NF-κB inhibition), 79.71 µM (hyaluronidase inhibition), 80.13 µM (elastase inhibition), 76.59 µM (collagenase inhibition), and 116-385 nM (Nrf2 activation) in the THP-1, HEK001, WS1, and HMCB cells. These findings underscore the promising profiles of the aqueous extract of R. urticifolius at safe cytotoxic concentrations. Additionally, we report, for the first time, the isolation and characterisation of these nitrogenous compounds in the R. urticifolius species. Finally, compound 1, isolated from R. urticifolius, is a promising candidate for the development of more effective and safer compounds for diseases related to skin pigmentation, protection against inflammation, and oxidative stress.

4.
RSC Med Chem ; 14(7): 1377-1388, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37484563

ABSTRACT

Modulation of PPAR-α by natural ligands is a novel strategy for the development of anticancer therapies. A series of 16 compounds based on the structure of 3-(pyridin-3-yl)-5-(thiophen-3-yl)-1,2,4-oxadiazole (natural compound) with antitumour potential were designed and synthesised. The cytotoxicity and PPAR agonist activity of these synthetic 1,2,4-oxadiazoles were evaluated in the A-498 and DU 145 tumour cell lines. Preliminary biological evaluation showed that most of these synthetic 1,2,4-oxadiazoles are less cytotoxic (sulforhodamine B assay) than the positive control WY-14643. Regarding the PPAR-α modulation, compound 16 was the most active, with EC50 = 0.23-0.83 µM (PPAR-α). Additionally, compound 16 had a similar activity to the natural compound (EC50 = 0.18-0.77 µM) and was less toxic in the RPTEC and WPMY-1 cell lines (non-tumour cells) (CC50 = 81.66-92.67 µM) than the natural compound. Looking at the link between chemical structure and activity, our study demonstrates that changes to the natural 1,2,4-oxadiazole at the level of the thiophenyl residue can lead to new agonists of PPAR-α with promising anti-tumour activity.

SELECTION OF CITATIONS
SEARCH DETAIL