Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Toxicol ; 120: 108422, 2023 09.
Article in English | MEDLINE | ID: mdl-37330176

ABSTRACT

Cadmium (Cd) is often detected in the environment due to its wide use in industry; also, NSAIDs are one of the most consumed pharmaceuticals, particularly diclofenac (DCF). Several studies have reported the presence of both contaminants in water bodies at concentrations ranging from ng L-1 to µg L-1; in addition, they have shown that they can induce oxidative stress in aquatic species and disturb signal transduction, cell proliferation, and intercellular communication, which could lead to teratogenesis. Spirulina has been consumed as a dietary supplement; its antioxidant, anti-inflammatory, neuroprotective, and nutritional properties are well documented. This work aimed to evaluate if Spirulina reduces the damage induced by Cd and DCF mixture in Xenopus laevis at early life stages. FETAX assay was carried out: 20 fertilized oocytes were exposed to seven different treatments on triplicate, control, Cd (24.5 µg L-1), DCF (149 µg L-1), Cd + DCF, Cd+DCF+Spirulina (2 mg L-1), Cd+DCF+Spirulina (4 mg L-1), Cd+DCF+Spirulina (10 mg L-1), malformations, mortality, and growth were evaluated after 96 h, also lipid peroxidation, superoxide dismutase and catalase activity were determined after 192 h. Cd increased DCF mortality, Cd and DCF mixture increased the incidence of malformations as well as oxidative damage; on the other hand, the results obtained show that Spirulina can be used to reduce the damage caused by the mixture of Cd and DCF since it promotes growth, reduce mortality, malformations, and oxidative stress in X. laevis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Spirulina , Animals , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Spirulina/metabolism , Xenopus laevis , Cadmium/toxicity , Diclofenac/toxicity , Oxidative Stress , Antioxidants/pharmacology , Metals
2.
Article in English | MEDLINE | ID: mdl-34102331

ABSTRACT

Spirulina (Arthrospira maxima) has been recognized as a superfood and nutraceutical by its high nutritional value and the benefits of its consumption; it is an important source of lipids, proteins, vitamins, minerals, and antioxidants. It is known that spirulina has positive effects on the toxicity induced by pharmaceuticals and metals. Heavy metals such as cadmium, frequently used in industrial activities, are continuously detected in water bodies and can generate adverse effects on aquatic organisms even at low concentrations. This study aimed to evaluate the protective effect of spirulina (Arthrospira maxima) against the toxic effects induced by cadmium in the early life stages of Xenopus laevis. Twenty Xenopus laevis embryos were exposed to five different treatments on triplicate, control, cadmium (CdCl2 24.5 µg L-1) and three spirulina mixtures Cd + S 1 (24.5 µg L-1 CdCl2 + 2 mg L-1 spirulina), Cd + S 2 (24.5 µg L-1 CdCl2 + 2 mg L-1 spirulina), Cd + S 3 (24.5 µg L-1 CdCl2 + 10 mg L-1 spirulina); after 96 h of exposure: Malformations, mortality and length were evaluated; also, after 192 h, lipid peroxidation (LPX), superoxide dismutase (SOD) and catalase (CAT) were determined. All spirulina treatments decreased mortality from 34 to 50% and reduced malformations on incidence from 36 to 68%. Treatment Cd + S 3 decreased growth inhibition significantly. Spirulina treatment Cd + S 2 decreased lipidic peroxidation and antioxidant activity; these results suggest that spirulina (Arthrospira maxima) can decrease the mortality, frequency of malformations, the severity of malformations, growth inhibition, and oxidative damage induced by cadmium in Xenopus laevis embryos.


Subject(s)
Cadmium Chloride/toxicity , Oxidative Stress/drug effects , Spirulina , Water Pollutants, Chemical/toxicity , Xenopus laevis , Abnormalities, Drug-Induced/prevention & control , Animals , Catalase/genetics , Catalase/metabolism , Embryo, Nonmammalian/drug effects , Female , Gene Expression Regulation, Enzymologic/drug effects , Larva/drug effects , Lipid Peroxidation/drug effects , Male , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
3.
Biomed Res Int ; 2017: 2352594, 2017.
Article in English | MEDLINE | ID: mdl-28691017

ABSTRACT

Steviol glycosides are sweetening compounds from the Stevia rebaudiana Bertoni plant. This product is considered safe for human consumption and was approved as a food additive by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA). Its effects on the ecosystem have not been studied in depth; therefore, it is necessary to carry out ecotoxicological studies in organisms such as Cyprinus carpio. The present study aimed to evaluate the antioxidant activity by SGs on diverse tissues in C. carpio using oxidative stress (OS) biomarkers. To test the antioxidant activity, carps were exposed to four systems: (1) SGs free control, (2) CCl4 0.5 mL/kg, (3) SGs 1 g/L, and (4) CCl4 0.5 mL/kg + SGs 1 g/L at 96 h. The following biomarkers were analyzed: lipoperoxidation (LPX), hydroperoxide content (HPC), and protein carbonyl content (PCC), as well as antioxidant activity of superoxide dismutase (SOD) and catalase (CAT). It was found that both (3 and 4) systems' exposure decreases LPX, CHP, PCC, SOD, and CAT with respect to the CCl4 system. The results of this study demonstrate that the concentrations of SGs used are not capable of generating oxidative stress and, on the contrary, would appear to induce an antioxidant effect.


Subject(s)
Carps/metabolism , Diterpenes, Kaurane/pharmacology , Glucosides/pharmacology , Oxidative Stress/drug effects , Animals , Catalase/metabolism , Hydrogen Peroxide/blood , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Models, Animal , Organ Specificity/drug effects , Protein Carbonylation/drug effects , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...