Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 13: 1068328, 2022.
Article in English | MEDLINE | ID: mdl-36519174

ABSTRACT

Infectious Bursal Disease Virus (IBDV) is the causative agent of an immunosuppressive disease that affects domestic chickens (Gallus gallus) severely affecting poultry industry worldwide. IBDV infection is characterized by a rapid depletion of the bursal B cell population by apoptosis and the atrophy of this chief lymphoid organ. Previous results from our laboratory have shown that exposure of infected cells to type I IFN leads to an exacerbated apoptosis, indicating an important role of IFN in IBDV pathogenesis. It has been described that recognition of the dsRNA IBDV genome by MDA5, the only known cytoplasmic pattern recognition receptor for viral RNA in chickens, leads to type I IFN production. Here, we confirm that TRIM25, an E3 ubiquitin ligase that leads to RIG-I activation in mammalian cells, significantly contributes to positively regulate MDA5-mediated activation of the IFN-inducing pathway in chicken DF-1 cells. Ectopic expression of chTRIM25 together with chMDA5 or a deletion mutant version exclusively harboring the CARD domains (chMDA5 2CARD) enhances IFN-ß and NF-ĸB promoter activation. Using co-immunoprecipitation assays, we show that chMDA5 interacts with chTRIM25 through the CARD domains. Moreover, chTRIM25 co-localizes with both chMDA5 and chMDA5 2CARD, but not with chMDA5 mutant proteins partially or totally lacking these domains. On the other hand, ablation of endogenous chTRIM25 expression reduces chMDA5-induced IFN-ß and NF-ĸB promoter activation. Interestingly, ectopic expression of either wild-type chTRIM25, or a mutant version (chTRIM25 C59S/C62S) lacking the E3 ubiquitin ligase activity, restores the co-stimulatory effect of chMDA5 in chTRIM25 knockout cells, suggesting that the E3-ubiquitin ligase activity of chTRIM25 is not required for its downstream IFN-ß and NF-ĸB activating function. Also, IBDV-induced expression of IFN-ß, Mx and OAS genes was reduced in chTRIM25 knockout as compared to wild-type cells, hence contributing to the enhancement of IBDV replication. Enhanced permissiveness to replication of other viruses, such as avian reovirus, Newcastle disease virus and vesicular stomatitis virus was also observed in chTRIM25 knockout cells. Additionally, chTRIM25 knockout also results in reduced MAVS-induced IFN-ß promoter stimulation. Nonetheless, similarly to its mammalian counterpart, chTRIM25 overexpression in wild-type DF-1 cells causes the degradation of ectopically expressed chMAVS.

2.
Cell Host Microbe ; 30(3): 286-288, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35271801

ABSTRACT

In this issue of Cell Host & Microbe, Talbot-Cooper et al. highlight how viruses develop strategies that can target universal activators of the innate immune response. The authors unravel a common mechanism between poxviruses and paramyxoviruses to limit the expression of antiviral genes and promote virulence.


Subject(s)
Interferons , Viruses , Antiviral Agents , Immunity, Innate , Virulence , Viruses/genetics , Viruses/immunology
3.
Proc Natl Acad Sci U S A ; 117(45): 28344-28354, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33097660

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.


Subject(s)
COVID-19/metabolism , Interferons/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Binding Sites , Chlorocebus aethiops , HEK293 Cells , Humans , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Matrix-Associated Proteins/metabolism , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/metabolism , Protein Binding , Signal Transduction , Vero Cells
4.
Cell Rep ; 31(1): 107498, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268088

ABSTRACT

The Toll/IL-1R-domain-containing adaptor protein SARM1 is expressed primarily in the brain, where it mediates axonal degeneration. Roles for SARM1 in TLR signaling, viral infection, inflammasome activation, and chemokine and Xaf1 expression have also been described. Much of the evidence for SARM1 function relies on SARM1-deficient mice generated in 129 ESCs and backcrossed to B6. The Sarm1 gene lies in a gene-rich region encompassing Xaf1 and chemokine loci, which remain 129 in sequence. We therefore generated additional knockout strains on the B6 background, confirming the role of SARM1 in axonal degeneration and WNV infection, but not in VSV or LACV infection, or in chemokine or Xaf1 expression. Sequence variation in proapoptotic Xaf1 between B6 and 129 results in coding changes and distinct splice variants, which may account for phenotypes previously attributed to SARM1. Reevaluation of phenotypes in these strains will be critical for understanding the function of SARM1.


Subject(s)
Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/genetics , Apoptosis Regulatory Proteins/metabolism , Axons/metabolism , Brain/metabolism , Encephalitis, California/genetics , Eye Diseases, Hereditary , Female , La Crosse virus , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Phenotype , Receptors, Interleukin-1/metabolism , Retinal Degeneration , Signal Transduction/genetics , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vision Disorders , West Nile Fever/genetics
5.
Nat Struct Mol Biol ; 25(9): 885-893, 2018 09.
Article in English | MEDLINE | ID: mdl-30177761

ABSTRACT

Viral infection perturbs host cells and can be used to uncover regulatory mechanisms controlling cellular responses and susceptibility to infections. Using cell biological, biochemical, and genetic tools, we reveal that influenza A virus (IAV) infection induces global transcriptional defects at the 3' ends of active host genes and RNA polymerase II (RNAPII) run-through into extragenic regions. Deregulated RNAPII leads to expression of aberrant RNAs (3' extensions and host-gene fusions) that ultimately cause global transcriptional downregulation of physiological transcripts, an effect influencing antiviral response and virulence. This phenomenon occurs with multiple strains of IAV, is dependent on influenza NS1 protein, and can be modulated by SUMOylation of an intrinsically disordered region (IDR) of NS1 expressed by the 1918 pandemic IAV strain. Our data identify a strategy used by IAV to suppress host gene expression and indicate that polymorphisms in IDRs of viral proteins can affect the outcome of an infection.


Subject(s)
Influenza, Human/genetics , RNA Polymerase II/genetics , Terminator Regions, Genetic/genetics , Humans , Influenza A virus/pathogenicity , Influenza A virus/physiology , Virulence
6.
PLoS Pathog ; 14(6): e1007135, 2018 06.
Article in English | MEDLINE | ID: mdl-29958302

ABSTRACT

The RNA helicase LGP2 (Laboratory of Genetics and Physiology 2) is a non-signaling member of the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), whose pivotal role on innate immune responses against RNA viruses is being increasingly uncovered. LGP2 is known to work in synergy with melanoma differentiation-associated gene 5 (MDA5) to promote the antiviral response induced by picornavirus infection. Here, we describe the activity of the foot-and-mouth disease virus (FMDV) Leader protease (Lpro) targeting LGP2 for cleavage. When LGP2 and Lpro were co-expressed, cleavage products were observed in an Lpro dose-dependent manner while co-expression with a catalytically inactive Lpro mutant had no effect on LGP2 levels or pattern. We further show that Lpro localizes and immunoprecipitates with LGP2 in transfected cells supporting their interaction within the cytoplasm. Evidence of LGP2 proteolysis was also detected during FMDV infection. Moreover, the inhibitory effect of LGP2 overexpression on FMDV growth observed was reverted when Lpro was co-expressed, concomitant with lower levels of IFN-ß mRNA and antiviral activity in those cells. The Lpro target site in LGP2 was identified as an RGRAR sequence in a conserved helicase motif whose replacement to EGEAE abrogated LGP2 cleavage by Lpro. Taken together, these data suggest that LGP2 cleavage by the Leader protease of aphthoviruses may represent a novel antagonistic mechanism for immune evasion.


Subject(s)
Endopeptidases/metabolism , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/virology , Immune Evasion/immunology , Immunity, Innate/immunology , RNA Helicases/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , Cricetinae , Endopeptidases/genetics , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/pathology , Foot-and-Mouth Disease Virus/enzymology , HEK293 Cells , Humans , RNA Helicases/genetics , RNA Helicases/immunology , Vero Cells
7.
J Gen Virol ; 98(6): 1282-1293, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28631605

ABSTRACT

Retinoic acid inducible gene (RIG-I)-mediated innate immunity plays a pivotal role in defence against virus infections. Previously we have shown that Sendai virus (SeV) defective interfering (DI) RNA functions as an exclusive and potent RIG-I ligand in DI-RNA-rich SeV-Cantell infected cells. To further understand how RIG-I is activated during SeV infection, we used a different interferon (IFN)-inducing SeV strain, recombinant SeVΔC, which, in contrast to SeV-Cantell is believed to stimulate IFN production due to the lack of the SeV IFN antagonist protein C. Surprisingly, we found that in SevΔC-infected cells, DI RNAs also functioned as an exclusive RIG-I ligand. Infections with wild-type SeV failed to generate any RIG-I-associated immunostimulatory RNA and this correlated with the lack of DI genomes in infected cells, as well as with the absence of cellular innate immune responses. Supplementation of the C protein in the context of SeVΔC infection led to a reduction in the number of DI RNAs, further supporting the potential role of the C protein as a negative regulator of DI generation and/or accumulation. Our findings indicate that limiting DI genome production is an important function of viral IFN antagonist proteins.


Subject(s)
DEAD Box Protein 58/metabolism , Gene Deletion , Gene Expression Regulation, Viral , RNA, Small Interfering/metabolism , Sendai virus/immunology , Viral Proteins/genetics , Adjuvants, Immunologic/metabolism , Genetic Complementation Test , HeLa Cells , Humans , RNA, Viral/metabolism , Receptors, Immunologic , Sendai virus/genetics
8.
Nat Microbiol ; 2: 17022, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28248290

ABSTRACT

Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection. These factors were integrated with experimentally and computationally derived interactome data to build a RIG-I protein interaction network. Our analysis revealed diverse cellular processes, including the unfolded protein response, Wnt signalling and RNA metabolism, as critical cellular components governing innate responses to non-self RNA species. Importantly, we identified K-Homology Splicing Regulatory Protein (KHSRP) as a negative regulator of this pathway. We find that KHSRP associates with the regulatory domain of RIG-I to maintain the receptor in an inactive state and attenuate its sensing of viral RNA (vRNA). Consistent with increased RIG-I antiviral signalling in the absence of KHSRP, viral replication is reduced when KHSRP expression is knocked down both in vitro and in vivo. Taken together, these data indicate that KHSRP functions as a checkpoint regulator of the innate immune response to pathogen challenge.


Subject(s)
DEAD Box Protein 58/antagonists & inhibitors , RNA, Viral/immunology , RNA-Binding Proteins/metabolism , Signal Transduction , Trans-Activators/metabolism , HEK293 Cells , Humans , Immunity, Innate , Influenza A Virus, H1N1 Subtype/immunology , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Receptors, Immunologic
9.
J Virol ; 89(13): 6848-59, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25903341

ABSTRACT

UNLABELLED: The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop ß9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. IMPORTANCE: The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid substitutions at this polymerase region can impair the transport of 3D to the nucleus, reduce 3D binding to RNA, and alter the relative incorporation of standard nucleoside monophosphate versus ribavirin monophosphate. Structural data reveal that the conformational changes in this region, forming part of the template channel entry, would be involved in nucleotide discrimination. The results have implications for the understanding of viral polymerase function and for lethal mutagenesis mechanisms.


Subject(s)
Antigens, Viral/chemistry , Antigens, Viral/metabolism , Foot-and-Mouth Disease Virus/enzymology , Nuclear Localization Signals , Nucleotides/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Substitution , Antigens, Viral/genetics , Crystallography, X-Ray , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Protein Binding , Protein Conformation , RNA/metabolism , Viral Nonstructural Proteins/genetics
10.
Virology ; 444(1-2): 203-10, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23886493

ABSTRACT

We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting. Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP, which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that the sequence MRKTKLAPT can be functionally considered as a NLS. When introduced in a FMDV full length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is essential for virus multiplication.


Subject(s)
Antigens, Viral/genetics , Foot-and-Mouth Disease Virus/genetics , Nuclear Localization Signals , Viral Nonstructural Proteins/genetics , Amino Acid Substitution , Animals , Antigens, Viral/metabolism , Cell Line , Cell Nucleus/chemistry , Cricetinae , DNA Mutational Analysis , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Mutagenesis, Site-Directed , Protein Transport , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Viral Nonstructural Proteins/metabolism
11.
Immunity ; 38(2): 384-98, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23438823

ABSTRACT

Innate immunity conferred by the type I interferon is critical for antiviral defense. To date only a limited number of tripartite motif (TRIM) proteins have been implicated in modulation of innate immunity and anti-microbial activity. Here we report the complementary DNA cloning and systematic analysis of all known 75 human TRIMs. We demonstrate that roughly half of the 75 TRIM-family members enhanced the innate immune response and that they do this at multiple levels in signaling pathways. Moreover, messenger RNA levels and localization of most of these TRIMs were found to be altered during viral infection, suggesting that their regulatory activities are highly controlled at both pre- and posttranscriptional levels. Taken together, our data demonstrate a very considerable dedication of this large protein family to the positive regulation of the antiviral response, which supports the notion that this family of proteins evolved as a component of innate immunity.


Subject(s)
Carrier Proteins/genetics , Immunity, Innate , Leukocytes, Mononuclear/metabolism , RNA, Messenger/genetics , Receptors, Pattern Recognition/genetics , Rhabdoviridae Infections/metabolism , Zinc Fingers/genetics , Alternative Splicing , Antiviral Restriction Factors , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/immunology , Cell Line , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/immunology , RNA, Messenger/immunology , RNA, Small Interfering/genetics , Receptors, Pattern Recognition/immunology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/virology , Signal Transduction , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Vesiculovirus/immunology , Zinc Fingers/immunology
12.
PLoS One ; 7(1): e29870, 2012.
Article in English | MEDLINE | ID: mdl-22272257

ABSTRACT

Type I interferon (IFN) stimulates expression and conjugation of the ubiquitin-like modifier IFN-stimulated gene 15 (ISG15), thereby restricting replication of a wide variety of viruses. Conjugation of ISG15 is critical for its antiviral activity in mice. HECT domain and RCC1-like domain containing protein 5 (HerC5) mediates global ISGylation in human cells, whereas its closest relative, HerC6, does not. So far, the requirement of HerC5 for ISG15-mediated antiviral activity has remained unclear. One of the main obstacles to address this issue has been that no HerC5 homologue exists in mice, hampering the generation of a good knock-out model. However, mice do express a homologue of HerC6 that, in contrast to human HerC6, can mediate ISGylation.Here we report that the mouse HerC6 N-terminal RCC1-like domain (RLD) allows ISG15 conjugation when replacing the corresponding domain in the human HerC6 homologue. In addition, sequences in the C-terminal HECT domain of mouse HerC6 also appear to facilitate efficient ISGylation. Mouse HerC6 paralleled human HerC5 in localization and IFN-inducibility. Moreover, HerC6 knock-down in mouse cells abolished global ISGylation, whereas its over expression enhanced the IFNß promoter and conferred antiviral activity against vesicular stomatitis virus and Newcastle disease virus. Together these data indicate that HerC6 is likely the functional counterpart of human HerC5 in mouse cells, suggesting that HerC6(-/-) mice may provide a feasible model to study the role of human HerC5 in antiviral responses.


Subject(s)
Cytokines/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Animals , Binding Sites , Blotting, Western , Cell Line , Cell Line, Tumor , Cytokines/genetics , Cytoplasm/drug effects , Cytoplasm/metabolism , Gene Expression/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , Interferon-beta/pharmacology , Mice , Mice, Knockout , Microscopy, Confocal , NIH 3T3 Cells , Newcastle disease virus/genetics , Newcastle disease virus/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitin-Protein Ligases/genetics , Ubiquitins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...