Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38341666

ABSTRACT

To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3ß). GSK3α and GSK3ß are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3ß) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.


Subject(s)
Glycogen Synthase Kinase 3 , Serum Albumin, Bovine , Sperm Capacitation , Animals , Female , Male , Mice , Calcium/metabolism , Cyclic AMP/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mammals , Phosphorylation , Semen/metabolism , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/metabolism , Sperm Motility , Spermatozoa/metabolism
2.
bioRxiv ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37904966

ABSTRACT

Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Although midpiece contraction may occur in a subset of cells that undergo acrosomal exocytosis, live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network's role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility. Significant statement: In this work, we demonstrate that the helical structure of polymerized actin in the flagellum undergoes a rearrangement at the time of sperm-egg fusion. This process is driven by intracellular calcium and promotes a decrease in the sperm midpiece diameter as well as the arrest in motility, which is observed after the fusion process is initiated.

4.
Biosystems ; 209: 104524, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34453988

ABSTRACT

Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.


Subject(s)
Acrosome Reaction/physiology , Calcium Signaling/physiology , Calcium/metabolism , Sperm Motility/physiology , Spermatozoa/physiology , Animals , Calcium Channels/metabolism , Humans , Male , Models, Biological , Sperm Tail/metabolism , Sperm Tail/physiology , Spermatozoa/metabolism
5.
FASEB J ; 35(6): e21478, 2021 06.
Article in English | MEDLINE | ID: mdl-33991146

ABSTRACT

Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.


Subject(s)
Acrosome Reaction , Calcium Signaling , Exocytosis , Membrane Potentials , Sperm Capacitation , Spermatozoa/physiology , Humans , Male , Phosphorylation
6.
FASEB J ; 35(4): e21528, 2021 04.
Article in English | MEDLINE | ID: mdl-33742713

ABSTRACT

We have recently reported two different methodologies that improve sperm functionality. The first method involved transient exposure to the Ca2+ ionophore A23187 , and the second required sperm incubation in the absence of energy nutrients (starvation). Both methods were associated with an initial loss of motility followed by a rescue step involving ionophore removal or addition of energy metabolites, respectively. In this work, we show that starvation is accompanied by an increase in intracellular Ca2+ ([Ca2+ ]i ). Additionally, the starved cells acquire a significantly enhanced capacity to undergo a progesterone-induced acrosome reaction. Electrophysiological measurements show that CatSper channel remains active in starvation conditions. However, the increase in [Ca2+ ]i was also observed in sperm from CatSper null mice. Upon starvation, addition of energy nutrients reversed the effects on [Ca2+ ]i and decreased the effect of progesterone on the acrosome reaction to control levels. These data indicate that both methods have common molecular features.


Subject(s)
Calcium/metabolism , Progesterone/pharmacology , Sperm Capacitation/drug effects , Starvation/metabolism , Acrosome Reaction/drug effects , Animals , Calcium Channels/metabolism , Cell Membrane/metabolism , Female , Male , Mice , Progesterone/metabolism , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism
7.
Mol Reprod Dev ; 87(12): 1188-1198, 2020 12.
Article in English | MEDLINE | ID: mdl-33118273

ABSTRACT

Acrosomal exocytosis (AR) is a critical process that sperm need to undergo to fertilize an egg. The evaluation of the presence or absence of the acrosome is usually performed by using lectins or dyes in fixed cells. With this approach, it is neither possible to monitor the dynamic process of exocytosis and related molecular events while discriminating between live and dead cells, nor to evaluate the acrosomal status while sperm reside in the female reproductive tract. However, over the last two decades, several new methodologies have been used to assess the occurrence of AR in living cells allowing different groups to obtain information that was not possible in the past. These techniques have revolutionized the whole study of this process. This review summarizes current methods available to analyze AR in living cells as well as the important information that emerged from studies using these approaches.


Subject(s)
Acrosome Reaction/physiology , Acrosome/metabolism , Exocytosis/physiology , Fertilization in Vitro/methods , Sperm Capacitation/physiology , Actin Cytoskeleton/metabolism , Animals , Calcium/metabolism , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Male , Mice , Mice, Transgenic , Zona Pellucida/metabolism
8.
J Cell Sci ; 131(21)2018 11 08.
Article in English | MEDLINE | ID: mdl-30301778

ABSTRACT

Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Acrosome/metabolism , Actin Cytoskeleton/metabolism , Spermatozoa/metabolism , Animals , Exocytosis , Male , Mice , Molecular Imaging
9.
Adv Anat Embryol Cell Biol ; 220: 35-69, 2016.
Article in English | MEDLINE | ID: mdl-27194349

ABSTRACT

The acrosome reaction (AR) is a unique exocytotic process where the acrosome, a single membrane-delimited specialized organelle, overlying the nucleus in the sperm head of many species, fuses with the overlying plasma membrane. This reaction, triggered by physiological inducers from the female gamete, its vicinity, or other stimuli, discharges the acrosomal content modifying the plasma membrane, incorporating the inner acrosomal membrane, and exposing it to the extracellular medium. The AR is essential for sperm-egg coat penetration, fusion with the eggs' plasma membrane, and fertilization. As in most exocytotic processes Ca(2+) is crucial for the AR, as well as intracellular pH and membrane potential changes. Thus, among the required processes needed for this reaction, ion permeability changes involving channels are pivotal. In spite of the key role ion channels play in the AR, their identity and regulation is not fully understood. Though molecular and pharmacological evidence indicates that various ionic channels participate during the AR, such as store-operated Ca(2+) channels and voltage-dependent Ca(2+) channels, whole cell patch clamp recordings have failed to detect some of them until now. Since sperm display a very high resistance and a minute cytoplasmic volume, very few channels are needed to achieve large membrane potential and concentration changes. Functional detection of few channels in the morphologically complex and tiny sperm poses technical problems, especially when their conductance is very small, as in the case of SOCs. Single channel recordings and novel fluorescence microscopy strategies will help to define the participation of ionic channels in the intertwined signaling network that orchestrates the AR.


Subject(s)
Acrosome Reaction/physiology , Acrosome/metabolism , Calcium Channels/physiology , Cell Membrane/metabolism , Large-Conductance Calcium-Activated Potassium Channels/physiology , Membrane Potentials/physiology , Animals , Calcium/metabolism , Exocytosis/physiology , Humans , Hydrogen-Ion Concentration , Male , Mice , Patch-Clamp Techniques , Potassium/metabolism
10.
Development ; 143(13): 2325-33, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27226326

ABSTRACT

Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm have suggested a role for PYK2 based on the use of small molecule inhibitors directed against this kinase. However, crucially, loss-of-function experiments have not been reported. Here, we used both pharmacological inhibitors and genetically modified mice models to investigate the identity of the tyrosine kinase(s) mediating the increase in tyrosine phosphorylation in mouse sperm. Similar to stallion and human, PF431396 blocks the capacitation-associated increase in tyrosine phosphorylation. Yet, sperm from Pyk2(-/-) mice displayed a normal increase in tyrosine phosphorylation, implying that PYK2 is not responsible for this phosphorylation process. Here, we show that PF431396 can also inhibit FER, a tyrosine kinase known to be present in sperm. Sperm from mice targeted with a kinase-inactivating mutation in Fer failed to undergo capacitation-associated increases in tyrosine phosphorylation. Although these mice are fertile, their sperm displayed a reduced ability to fertilize metaphase II-arrested eggs in vitro.


Subject(s)
Phosphotyrosine/metabolism , Protein-Tyrosine Kinases/metabolism , Sperm Capacitation/physiology , Spermatozoa/enzymology , Animals , Focal Adhesion Kinase 2/metabolism , Male , Mice, Inbred C57BL , Phosphorylation
11.
Biol Reprod ; 94(3): 63, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26819478

ABSTRACT

During capacitation, sperm acquire the ability to undergo the acrosome reaction (AR), an essential step in fertilization. Progesterone produced by cumulus cells has been associated with various physiological processes in sperm, including stimulation of AR. An increase in intracellular Ca(2+) ([Ca(2+)]i) is necessary for AR to occur. In this study, we investigated the spatiotemporal correlation between the changes in [Ca(2+)]i and AR in single mouse spermatozoa in response to progesterone. We found that progesterone stimulates an [Ca(2+)]i increase in five different patterns: gradual increase, oscillatory, late transitory, immediate transitory, and sustained. We also observed that the [Ca(2+)]i increase promoted by progesterone starts at either the flagellum or the head. We validated the use of FM4-64 as an indicator for the occurrence of the AR by simultaneously detecting its fluorescence increase and the loss of EGFP in transgenic EGFPAcr sperm. For the first time, we have simultaneously visualized the rise in [Ca(2+)]i and the process of exocytosis in response to progesterone and found that only a specific transitory increase in [Ca(2+)]i originating in the sperm head promotes the initiation of AR.


Subject(s)
Acrosome Reaction/drug effects , Calcium/metabolism , Progesterone/pharmacology , Spermatozoa/drug effects , Animals , Male , Mice , Mice, Transgenic , Pyridinium Compounds , Quaternary Ammonium Compounds , Spermatozoa/physiology
12.
J Cell Physiol ; 230(8): 1758-1769, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25597298

ABSTRACT

Mammalian sperm acquire fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca(2+), and an increase in tyrosine phosphorylation. How these signaling systems interact during capacitation is not well understood. Results presented in this study indicate that Ca(2+) ions have a biphasic role in the regulation of cAMP-dependent signaling. Media without added Ca(2+) salts (nominal zero Ca(2+)) still contain micromolar concentrations of this ion. Sperm incubated in this medium did not undergo PKA activation or the increase in tyrosine phosphorylation suggesting that these phosphorylation pathways require Ca(2+). However, chelation of the extracellular Ca(2+) traces by EGTA induced both cAMP-dependent phosphorylation and the increase in tyrosine phosphorylation. The EGTA effect in nominal zero Ca(2+) media was mimicked by two calmodulin antagonists, W7 and calmidazolium, and by the calcineurin inhibitor cyclosporine A. These results suggest that Ca(2+) ions regulate sperm cAMP and tyrosine phosphorylation pathways in a biphasic manner and that some of its effects are mediated by calmodulin. Interestingly, contrary to wild-type mouse sperm, sperm from CatSper1 KO mice underwent PKA activation and an increase in tyrosine phosphorylation upon incubation in nominal zero Ca(2+) media. Therefore, sperm lacking Catsper Ca(2+) channels behave as wild-type sperm incubated in the presence of EGTA. This latter result suggests that Catsper transports the Ca(2+) involved in the regulation of cAMP-dependent and tyrosine phosphorylation pathways required for sperm capacitation.


Subject(s)
Calcium/metabolism , Signal Transduction/physiology , Sperm Capacitation/physiology , Animals , Blotting, Western , Calcium Channels/metabolism , Cyclic AMP/metabolism , Male , Mice , Mice, Knockout , Phosphorylation , Sperm Motility/physiology , Tyrosine/metabolism
13.
Biol Reprod ; 91(3): 67, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25100708

ABSTRACT

The spermatozoa acrosome reaction (AR) is essential for mammalian fertilization. Few methods allow visualization of AR in real time together with Ca²âº imaging. Here, we show that FM4-64, a fluorescent dye used to follow exocytosis, reliably reports AR progression induced by ionomycin and progesterone in human spermatozoa. FM4-64 clearly delimits the spermatozoa contour and reports morphological cell changes before, during, and after AR. This strategy unveiled the formation of moving tubular appendages, emerging from acrosome-reacted spermatozoa, which was confirmed by scanning electron microscopy. Alternate wavelength illumination allowed concomitant imaging of FM4-64 and Fluo-4, a Ca²âº indicator. These AR and intracellular Ca²âº ([Ca²âº]i) recordings revealed that the presence of [Ca²âº]i oscillations, both spontaneous and progesterone induced, prevents AR in human spermatozoa. Notably, the progesterone-induced AR is preceded by a second [Ca²âº]i peak and ~40% of reacting spermatozoa also manifest a slow [Ca²âº]i rise ~2 min before AR. Our findings uncover new AR features related to [Ca²âº]i.


Subject(s)
Acrosome Reaction , Calcium Signaling , Semen Analysis/methods , Spermatozoa/physiology , Acrosome Reaction/drug effects , Aniline Compounds/chemistry , Calcium Ionophores/pharmacology , Calcium Signaling/drug effects , Cell Shape/drug effects , Cell Surface Extensions/drug effects , Cell Surface Extensions/physiology , Cell Surface Extensions/ultrastructure , Cell Survival/drug effects , Female , Fluorescent Dyes/chemistry , Humans , Ionomycin/pharmacology , Kinetics , Male , Microscopy, Electron, Scanning , Progesterone/metabolism , Pyridinium Compounds/chemistry , Quaternary Ammonium Compounds/chemistry , Single-Cell Analysis , Spermatozoa/drug effects , Spermatozoa/ultrastructure , Xanthenes/chemistry
14.
Proc Natl Acad Sci U S A ; 110(46): 18543-8, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24128762

ABSTRACT

Ca(2+) ionophore A23187 is known to induce the acrosome reaction of mammalian spermatozoa, but it also quickly immobilizes them. Although mouse spermatozoa were immobilized by this ionophore, they initiated vigorous motility (hyperactivation) soon after this reagent was washed away by centrifugation. About half of live spermatozoa were acrosome-reacted at the end of 10 min of ionophore treatment; fertilization of cumulus-intact oocytes began as soon as spermatozoa recovered their motility and before the increase in protein tyrosine phosphorylation, which started 30-45 min after washing out the ionophore. When spermatozoa were treated with A23187, more than 95% of oocytes were fertilized in the constant presence of the protein kinase A inhibitor, H89. Ionophore-treated spermatozoa also fertilized 80% of oocytes, even in the absence of HCO3(-), a component essential for cAMP synthesis under normal in vitro conditions. Under these conditions, fertilized oocytes developed into normal offspring. These data indicate that mouse spermatozoa treated with ionophore are able to fertilize without activation of the cAMP/PKA signaling pathway. Furthermore, they suggest that the cAMP/PKA pathway is upstream of an intracellular Ca(2+) increase required for the acrosome reaction and hyperactivation of spermatozoa under normal in vitro conditions.


Subject(s)
Calcimycin/pharmacology , Fertilization/drug effects , Sperm Capacitation/drug effects , Spermatozoa/drug effects , Animals , Blotting, Western , Calcium/metabolism , Cyclic AMP/metabolism , Female , Male , Mice , Phosphorylation , Pregnancy , Pregnancy Outcome , Signal Transduction/physiology , Spermatozoa/physiology
15.
J Biol Chem ; 288(49): 35307-20, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24129574

ABSTRACT

Fertilization competence is acquired in the female tract in a process known as capacitation. Capacitation is needed for the activation of motility (e.g. hyperactivation) and to prepare the sperm for an exocytotic process known as acrosome reaction. Although the HCO3(-)-dependent soluble adenylyl cyclase Adcy10 plays a role in motility, less is known about the source of cAMP in the sperm head. Transmembrane adenylyl cyclases (tmACs) are another possible source of cAMP. These enzymes are regulated by stimulatory heterotrimeric Gs proteins; however, the presence of Gs or tmACs in mammalian sperm has been controversial. In this study, we used Western blotting and cholera toxin-dependent ADP-ribosylation to show the Gs presence in the sperm head. Also, we showed that forskolin, a tmAC-specific activator, induces cAMP accumulation in sperm from both WT and Adcy10-null mice. This increase is blocked by the tmAC inhibitor SQ22536 but not by the Adcy10 inhibitor KH7. Although Gs immunoreactivity and tmAC activity are detected in the sperm head, PKA is only found in the tail, where Adcy10 was previously shown to reside. Consistent with an acrosomal localization, Gs reactivity is lost in acrosome-reacted sperm, and forskolin is able to increase intracellular Ca(2+) and induce the acrosome reaction. Altogether, these data suggest that cAMP pathways are compartmentalized in sperm, with Gs and tmAC in the head and Adcy10 and PKA in the flagellum.


Subject(s)
Adenylyl Cyclases/metabolism , Cyclic AMP/metabolism , Spermatozoa/metabolism , Acrosome/metabolism , Acrosome Reaction/drug effects , Adenine/analogs & derivatives , Adenine/pharmacology , Adenylyl Cyclases/deficiency , Adenylyl Cyclases/genetics , Animals , Calcium/metabolism , Cell Compartmentation , Colforsin/pharmacology , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Enzyme Inhibitors/pharmacology , Female , GTP-Binding Protein alpha Subunits, Gs/metabolism , Male , Mice , Mice, Knockout , Signal Transduction/drug effects , Sperm Capacitation/drug effects , Sperm Head/metabolism , Sperm Tail/metabolism , Spermatozoa/drug effects
16.
J Biol Chem ; 287(53): 44384-93, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23095755

ABSTRACT

Mammalian sperm are unable to fertilize the egg immediately after ejaculation; they acquire this capacity during migration in the female reproductive tract. This maturational process is called capacitation and in mouse sperm it involves a plasma membrane reorganization, extensive changes in the state of protein phosphorylation, increases in intracellular pH (pH(i)) and Ca(2+) ([Ca(2+)](i)), and the appearance of hyperactivated motility. In addition, mouse sperm capacitation is associated with the hyperpolarization of the cell membrane potential. However, the functional role of this process is not known. In this work, to dissect the role of this membrane potential change, hyperpolarization was induced in noncapacitated sperm using either the ENaC inhibitor amiloride, the CFTR agonist genistein or the K(+) ionophore valinomycin. In this experimental setting, other capacitation-associated processes such as activation of a cAMP-dependent pathway and the consequent increase in protein tyrosine phosphorylation were not observed. However, hyperpolarization was sufficient to prepare sperm for the acrosome reaction induced either by depolarization with high K(+) or by addition of solubilized zona pellucida (sZP). Moreover, K(+) and sZP were also able to increase [Ca(2+)](i) in non-capacitated sperm treated with these hyperpolarizing agents but not in untreated cells. On the other hand, in conditions that support capacitation-associated processes blocking hyperpolarization by adding valinomycin and increasing K(+) concentrations inhibited the agonist-induced acrosome reaction as well as the increase in [Ca(2+)](i). Altogether, these results suggest that sperm hyperpolarization by itself is key to enabling mice sperm to undergo the acrosome reaction.


Subject(s)
Acrosome Reaction , Spermatozoa/physiology , Animals , Cell Membrane/metabolism , Cell Polarity , Female , Male , Membrane Potentials , Mice , Phosphorylation
17.
Biol Reprod ; 87(4): 92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22914313

ABSTRACT

Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca(2+) ([Ca(2+)]i); however, very few studies exist on [Ca(2+)]i dynamics in these cells. Other tissues display Ca(2+) oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca(2+) imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca(2+)]i changes of living germ cells in situ within the SST preparation. Ca(2+) imaging revealed that a subpopulation of male germ cells display spontaneous [Ca(2+)]i fluctuations resulting from Ca(2+) entry possibly throughout Ca(V)3 channels. These [Ca(2+)]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca(2+) fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca(2+) oscillations for at least 10 min. Synchronous Ca(2+) oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca(2+)]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca(2+) signaling phenomena, functional cell-cell communication, and multicellular functional arrangements.


Subject(s)
Calcium Signaling/physiology , Germ Cells/metabolism , Microtomy/methods , Seminiferous Tubules/metabolism , Testis/cytology , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Calcium Signaling/drug effects , Cell Survival , Germ Cells/cytology , Germ Cells/drug effects , Male , Mice , Models, Biological , Seminiferous Tubules/cytology , Seminiferous Tubules/drug effects , Sertoli Cells/cytology , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Specimen Handling/methods , Spermatogenesis/physiology , Testis/drug effects
18.
Cell Tissue Res ; 349(3): 749-64, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22580508

ABSTRACT

Spermatozoa must translate information from their environment and the egg to achieve fertilization in sexually reproducing animals. These tasks require decoding a variety of signals in the form of intracellular Ca(2+) changes. As TRP channels constitute a large family of versatile multi-signal transducers, they are interesting subjects in which to explore their possible participation in sperm function. Here, we review the evidence for their presence and involvement in sperm motility, maturation, and the acrosome reaction, an exocytotic process required for sperm-egg fusion. Since store-operated Ca(2+) entry (SOCE) has been proposed to play an important role in these three functions, the main proteins responsible for this transport (STIM and ORAI) and their interaction with TRPs are also discussed. Improving our tools to solve infertility, improve animal breeding, and preserve biodiversity requires a better understanding of how Ca(2+) is regulated in spermatozoa.


Subject(s)
Spermatozoa/physiology , Transient Receptor Potential Channels/physiology , Animals , Calcium Channels/metabolism , Calcium Channels/physiology , Fertilization/physiology , Humans , Ion Transport , Male , Signal Transduction , Sperm Motility/physiology , Spermatozoa/growth & development , Spermatozoa/metabolism , Transient Receptor Potential Channels/metabolism
19.
Proc Natl Acad Sci U S A ; 107(50): 21878-83, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21098290

ABSTRACT

There are well-recognized sex differences in many pituitary endocrine axes, usually thought to be generated by gonadal steroid imprinting of the neuroendocrine hypothalamus. However, the recognition that growth hormone (GH) cells are arranged in functionally organized networks raises the possibility that the responses of the network are different in males and females. We studied this by directly monitoring the calcium responses to an identical GH-releasing hormone (GHRH) stimulus in populations of individual GH cells in slices taken from male and female murine GH-eGFP pituitary glands. We found that the GH cell network responses are sexually dimorphic, with a higher proportion of responding cells in males than in females, correlated with greater GH release from male slices. Repetitive waves of calcium spiking activity were triggered by GHRH in some males, but were never observed in females. This was not due to a permanent difference in the network architecture between male and female mice; rather, the sex difference in the proportions of GH cells responding to GHRH were switched by postpubertal gonadectomy and reversed with hormone replacements, suggesting that the network responses are dynamically regulated in adulthood by gonadal steroids. Thus, the pituitary gland contributes to the sexually dimorphic patterns of GH secretion that play an important role in differences in growth and metabolism between the sexes.


Subject(s)
Gonadal Steroid Hormones/metabolism , Growth Hormone/metabolism , Sex Characteristics , Animals , Calcium/metabolism , Calcium Signaling/physiology , Female , Growth Hormone-Releasing Hormone/metabolism , Male , Mice , Mice, Transgenic
20.
Neuroendocrinology ; 91(3): 239-55, 2010.
Article in English | MEDLINE | ID: mdl-20090289

ABSTRACT

In this study we used [Ca(2+)](i) imaging to monitor GnRH-induced intracellular Ca(2+) signalling from dozens of gonadotrophs in mouse male pituitary slices. Responses of individual cells vary in magnitude, latency, duration and frequency of oscillation. Approximately 20% of gonadotrophs in situ display Ca(2+) oscillations of increasing frequency at higher [GnRH] and biphasic (peak-plateau) responses at saturating [GnRH]. Nevertheless, this orderly progression, reported in cultured cells, is less well organized in 55% of cells. Furthermore, approximately 30% cells display non-oscillatory GnRH responses, reminiscent of immature gonadotrophs. Dose-response curves of slices from different animals suggest inter-individual differences in GnRH sensitivity. When the same dose of GnRH is applied repeatedly, individual cell responses are almost identical both in latency, oscillatory pattern and duration resembling the 'Ca(2+) fingerprint' phenomenon. In addition, gonadotrophs in situ are arranged in small clusters with similar GnRH-induced intracellular Ca(2+)-signalling patterns. Neighbouring gonadotrophs within clusters often display synchronized GnRH-induced responses with high correlation indices (>0.75). Nevertheless, synchronized responses between pairs of gonadotrophs are unaffected by incubation with blockers of gap-junction channels or P2X receptor channels, suggesting that they are not mediated by gap junctions or ATP. Alternative explanations are discussed, including pseudo-synchronization. In summary, while gonadotrophs in situ display GnRH-induced responses similar to those observed in cultured cells, different patterns and novel aspects of functional organization were found which deserve further investigation. This study on GnRH-induced Ca(2+) signalling in the acute mice pituitary gland might be of potential relevance for characterizing GnRH actions in gonadotrophs in transgenic and knockout animals.


Subject(s)
Calcium Signaling/physiology , Gonadotrophs/physiology , Gonadotropin-Releasing Hormone/physiology , Pituitary Gland/physiology , Animals , Dose-Response Relationship, Drug , Glycyrrhetinic Acid/pharmacology , Gonadotrophs/drug effects , Gonadotropin-Releasing Hormone/administration & dosage , Gonadotropin-Releasing Hormone/antagonists & inhibitors , In Vitro Techniques , Male , Mice , Mice, Inbred BALB C , Pituitary Gland/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...