Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Clin Oncol ; 41(14): 2561-2570, 2023 05 10.
Article in English | MEDLINE | ID: mdl-36821809

ABSTRACT

PURPOSE: In many cancers, the expression of immunomodulatory ligands leads to immunoevasion, as exemplified by the interaction of PD-L1 with PD-1 on tumor-infiltrating lymphocytes. Profound advances in cancer treatments have come with the advent of immunotherapies directed at blocking these immuno-suppressive ligand-receptor interactions. However, although there has been success in the use of these immune checkpoint interventions, correct patient stratification for these therapies has been challenging. MATERIALS AND METHODS: To address this issue of patient stratification, we have quantified the intercellular PD-1/PD-L1 interaction in formalin-fixed paraffin-embedded tumor samples from patients with non-small cell lung carcinoma, using a high-throughput automated quantitative imaging platform (quantitative functional proteomics [QF-Pro]). RESULTS: The multisite blinded analysis across a cohort of 188 immune checkpoint inhibitor-treated patients demonstrated the intra- and intertumoral heterogeneity of PD-1/PD-L1 immune checkpoint engagement and notably showed no correlation between the extent of PD-1/PD-L1 interaction and PD-L1 expression. Importantly, PD-L1 expression scores used clinically to stratify patients correlated poorly with overall survival; by contrast, patients showing a high PD-1/PD-L1 interaction had significantly better responses to anti-PD-1/PD-L1 treatments, as evidenced by increased overall survival. This relationship was particularly strong in the setting of first-line treatments. CONCLUSION: The functional readout of PD-1/PD-L1 interaction as a predictive biomarker for the stratification of patients with non-small-cell lung carcinoma, combined with PD-L1 expression, should significantly improve the response rates to immunotherapy. This would both capture patients excluded from checkpoint immunotherapy (high PD-1/PD-L1 interaction but low PD-L1 expression, 24% of patients) and additionally avoid treating patients who despite their high PD-L1 expression do not respond and suffer from side effects.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Immunotherapy/methods , B7-H1 Antigen
2.
Cancer Res ; 80(19): 4244-4257, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32855204

ABSTRACT

Many cancers are termed immunoevasive due to expression of immunomodulatory ligands. Programmed death ligand-1 (PD-L1) and cluster of differentiation 80/86 (CD80/86) interact with their receptors, programmed death receptor-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4), respectively, on tumor-infiltrating leukocytes eliciting immunosuppression. Immunotherapies aimed at blocking these interactions are revolutionizing cancer treatments, albeit in an inadequately described patient subset. To address the issue of patient stratification for immune checkpoint intervention, we quantitatively imaged PD-1/PD-L1 interactions in tumor samples from patients, employing an assay that readily detects these intercellular protein-protein interactions in the less than or equal to 10 nm range. These analyses across multiple patient cohorts demonstrated the intercancer, interpatient, and intratumoral heterogeneity of interacting immune checkpoints. The PD-1/PD-L1 interaction was not correlated with clinical PD-L1 expression scores in malignant melanoma. Crucially, among anti-PD-1-treated patients with metastatic non-small cell lung cancer, those with lower PD-1/PD-L1 interaction had significantly worsened survival. It is surmised that within tumors selecting for an elevated level of PD-1/PD-L1 interaction, there is a greater dependence on this pathway for immune evasion and hence, they exhibit more impressive patient response to intervention. SIGNIFICANCE: Quantitation of immune checkpoint interaction by direct imaging demonstrates that immunotherapy-treated patients with metastatic NSCLC with a low extent of PD-1/PD-L1 interaction show significantly worse outcome.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Renal Cell/immunology , Kidney Neoplasms/immunology , Lung Neoplasms/immunology , Melanoma/immunology , Programmed Cell Death 1 Receptor/metabolism , Adult , Aged , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Female , Fluorescence Resonance Energy Transfer/methods , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/mortality , Middle Aged , Molecular Targeted Therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Reproducibility of Results , Treatment Outcome
3.
Biochim Biophys Acta Biomembr ; 1859(5): 1019-1028, 2017 May.
Article in English | MEDLINE | ID: mdl-28238818

ABSTRACT

Human phospholipid scramblase 1 (SCR) is a membrane protein that catalyzes the transmembrane (flip-flop) motion of phospholipids. It can also exist in a non membrane-bound form in the nucleus, where it modulates several aspects of gene expression. Catalysis of phospholipid flip-flop requires the presence of millimolar Ca2+, and occurs in the absence of ATP. Membrane-bound SCR contains a C-terminal α-helical domain embedded in the membrane bilayer. The latter domain can be removed giving rise to a stable truncated mutant SCRΔ that is devoid of scramblase activity. In order to improve our understanding of SCR structure infrared spectra have been recorded of both the native and truncated forms, and the effects of adding Ca2+, or removing detergent, or thermally denaturing the protein have been observed. Under all conditions the main structural component of SCR/SCRΔ is a ß-sheet. Removing the C-terminal 28 aa residues, which anchor SCR to the membrane, leads to a change in tertiary structure and an increased structural flexibility. The main effect of Ca2+ is an increase in the α/ß ratio of secondary structure components, with a concomitant increase in the proportion of non-periodic structures. At least in SCRΔ, detergent (Zwittergent 3-12) decreases the structural flexibility, an effect somewhat opposite to that of increasing temperature. Thermal denaturation is affected by Ca2+, detergent, and by the presence or absence of the C-terminal domain, each of them influencing in different ways the denaturation pattern.


Subject(s)
Calcium/pharmacology , Detergents/pharmacology , Phospholipid Transfer Proteins/chemistry , Spectrophotometry, Infrared/methods , Humans , Protein Conformation , Protein Denaturation , Protein Structure, Secondary , Structure-Activity Relationship , Temperature
4.
Biophys J ; 111(5): 963-72, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27602724

ABSTRACT

Microbial rhodopsins are light-activated, seven-α-helical, retinylidene transmembrane proteins that have been identified in thousands of organisms across archaea, bacteria, fungi, and algae. Although they share a high degree of sequence identity and thus similarity in structure, many unique functions have been discovered and characterized among them. Some function as outward proton pumps, some as inward chloride pumps, whereas others function as light sensors or ion channels. Unique among the microbial rhodopsins characterized thus far, Anabaena sensory rhodopsin (ASR) is a photochromic sensor that interacts with a soluble 14-kDa cytoplasmic transducer that is encoded on the same operon. The sensor itself stably interconverts between all-trans-15-anti and 13-cis-15-syn retinal forms depending on the wavelength of illumination, although only the former participates in a photocycle with a signaling M intermediate. A mutation in the cytoplasmic half-channel of the protein, replacing Asp217 with Glu (D217E), results in the creation of a light-driven, single-photon, inward proton transporter. We present the 2.3 Å structure of dark-adapted D217E ASR, which reveals significant changes in the water network surrounding Glu217, as well as a shift in the carbon backbone near retinal-binding Lys210, illustrating a possible pathway leading to the protonation of Glu217 in the cytoplasmic half-channel, located 15 Å from the Schiff base. Crystallographic evidence for the protonation of nearby Glu36 is also discussed, which was described previously by Fourier transform infrared spectroscopy analysis. Finally, two histidine residues near the extracellular surface and their possible role in proton uptake are discussed.


Subject(s)
Sensory Rhodopsins/chemistry , Anabaena , Binding Sites , Crystallography , Cytoplasm , Escherichia coli , Hydrogen Bonding , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Sensory Rhodopsins/genetics , Sensory Rhodopsins/metabolism , Structure-Activity Relationship
5.
J Virol ; 89(8): 4645-54, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25673713

ABSTRACT

UNLABELLED: In naked viruses, membrane breaching is a key step that must be performed for genome transfer into the target cells. Despite its importance, the mechanisms behind this process remain poorly understood. The small protein VP4, encoded by the genomes of most viruses of the order Picornavirales, has been shown to be involved in membrane alterations. Here we analyzed the permeabilization activity of the natively nonmyristoylated VP4 protein from triatoma virus (TrV), a virus belonging to the Dicistroviridae family within the Picornavirales order. The VP4 protein was produced as a C-terminal maltose binding protein (MBP) fusion to achieve its successful expression. This recombinant VP4 protein is able to produce membrane permeabilization in model membranes in a membrane composition-dependent manner. The induced permeability was also influenced by the pH, being greater at higher pH values. We demonstrate that the permeabilization activity elicited by the protein occurs through discrete pores that are inserted on the membrane. Sizing experiments using fluorescent dextrans, cryo-electron microscopy imaging, and other, additional techniques showed that recombinant VP4 forms heterogeneous proteolipidic pores rather than common proteinaceous channels. These results suggest that the VP4 protein may be involved in the membrane alterations required for genome transfer or cell entry steps during dicistrovirus infection. IMPORTANCE: During viral infection, viruses need to overcome the membrane barrier in order to enter the cell and replicate their genome. In nonenveloped viruses membrane fusion is not possible, and hence, other mechanisms are implemented. Among other proteins, like the capsid-forming proteins and the proteins required for viral replication, several viruses of the order Picornaviridae contain a small protein called VP4 that has been shown to be involved in membrane alterations. Here we show that the triatoma virus VP4 protein is able to produce membrane permeabilization in model membranes by the formation of heterogeneous dynamic pores. These pores formed by VP4 may be involved in the genome transfer or cell entry steps during viral infection.


Subject(s)
Capsid Proteins/genetics , Cell Membrane Permeability/genetics , Dicistroviridae/genetics , Picornaviridae Infections/physiopathology , Recombinant Proteins/genetics , Virus Internalization , Base Sequence , Capsid Proteins/metabolism , Cloning, Molecular , Cryoelectron Microscopy , DNA Primers/genetics , Fluorescence , Hydrogen-Ion Concentration , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Molecular Sequence Data , Picornaviridae Infections/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Analysis, DNA
6.
Parasit Vectors ; 8: 29, 2015 Jan 17.
Article in English | MEDLINE | ID: mdl-25595198

ABSTRACT

BACKGROUND: Chagas disease is caused by Trypanosoma cruzi, and humans acquire the parasite by exposure to contaminated feces from hematophagous insect vectors known as triatomines. Triatoma virus (TrV) is the sole viral pathogen of triatomines, and is transmitted among insects through the fecal-oral route and, as it happens with T. cruzi, the infected insects release the virus when defecating during or after blood uptake. METHODS: In this work, we analysed the occurrence of anti-TrV antibodies in human sera from Chagas disease endemic and non-endemic countries, and developed a mathematical model to estimate the transmission probability of TrV from insects to man, which ranged between 0.00053 and 0.0015. RESULTS: Our results confirm that people with Chagas disease living in Bolivia, Argentina and Mexico have been exposed to TrV, and that TrV is unable to replicate in human hosts. CONCLUSIONS: We presented the first experimental evidence of antibodies against TrV structural proteins in human sera.


Subject(s)
Antibodies, Viral/blood , Chagas Disease/blood , Dicistroviridae/immunology , Triatoma/virology , Americas/epidemiology , Animals , Chagas Disease/epidemiology , Chagas Disease/immunology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Models, Biological , Portugal/epidemiology , Seroepidemiologic Studies , Viral Structural Proteins/immunology
7.
Biochim Biophys Acta ; 1838(7): 1785-92, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24680654

ABSTRACT

Human phospholipid scramblase 1 (SCR) consists of a large cytoplasmic domain and a small presumed transmembrane domain near the C-terminal end of the protein. Previous studies with the SCRΔ mutant lacking the C-terminal portion (last 28 aa) revealed the importance of this C-terminal moiety for protein function and calcium-binding affinity. The present contribution is intended to elucidate the effect of the transmembrane domain suppression on SCRΔ binding to model membranes (lipid monolayers and bilayers) and on SCRΔ reconstitution in proteoliposomes. In all cases the protein cytoplasmic domain showed a great affinity for lipid membranes, and behaved in most aspects as an intrinsic membrane protein. Assays have been performed in the presence of phosphatidylserine, presumably important for the SCR cytoplasmic domain to be electrostatically anchored to the plasma membrane inner surface. The fusion protein maltose binding protein-SCR has also been studied as an intermediate case of a molecule that can insert into the bilayer hydrophobic core, yet it is stable in detergent-free buffers. Although the intracellular location of SCR has been the object of debate, the present data support the view of SCR as an integral membrane protein, in which not only the transmembrane domain but also the cytoplasmic moiety play a role in membrane docking of the protein.


Subject(s)
Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Cell Membrane/metabolism , Cytoplasm/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Phosphatidylserines/metabolism , Protein Binding , Protein Structure, Tertiary , Proteolipids/metabolism , Water/metabolism
8.
J Membr Biol ; 247(2): 155-65, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24343571

ABSTRACT

Human phospholipid scramblase 1 (SCR) is a 318 amino acid protein that was originally described as catalyzing phospholipid transbilayer (flip-flop) motion in plasma membranes in a Ca²âº-dependent, ATP-independent way. Further studies have suggested an intranuclear role for this protein in addition. A putative transmembrane domain located at the C terminus (aa 291-309) has been related to the flip-flop catalysis. In order to clarify the role of the C-terminal region of SCR, a mutant was produced (SCRΔ) in which the last 28 amino acid residues were lacking, including the α-helix. SCRΔ had lost the scramblase activity and its affinity for Ca²âº was decreased by one order of magnitude. Fluorescence and IR spectroscopic studies revealed that the C-terminal region of SCR was essential for the proper folding of the protein. Moreover, it was found that Ca²âº exerted an overall destabilizing effect on SCR, which might facilitate its binding to membranes.


Subject(s)
Calcium/metabolism , Phospholipid Transfer Proteins/metabolism , Protein Interaction Domains and Motifs/physiology , Enzyme Activation , Humans , Lipid Metabolism , Mutation , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Thermodynamics
9.
Biochim Biophys Acta ; 1798(6): 1225-33, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20223223

ABSTRACT

alpha-Haemolysin (HlyA) is a toxin secreted by pathogenic Escherichia coli, whose lytic activity requires submillimolar Ca(2+) concentrations. Previous studies have shown that Ca(2+) binds within the Asp and Gly rich C-terminal nonapeptide repeat domain (NRD) in HlyA. The presence of the NRD puts HlyA in the RTX (Repeats in Toxin) family of proteins. We tested the stability of the whole protein, the amphipathic helix domain and the NRD, in both the presence and absence of Ca(2+) using native HlyA, a truncated form of HlyADeltaN601 representing the C-terminal domain, and a novel mutant HlyA W914A whose intrinsic fluorescence indicates changes in the N-terminal domain. Fluorescence and infrared spectroscopy, tryptic digestion, and urea denaturation techniques concur in showing that calcium binding to the repeat domain of alpha-haemolysin stabilizes and compacts both the NRD and the N-terminal domains of HlyA. The stabilization of the N-terminus through Ca(2+) binding to the C-terminus reveals long-range inter-domain structural effects. Considering that RTX proteins consist, in general, of a Ca(2+)-binding NRD and separate function-specific domains, the long-range stabilizing effects of Ca(2+) in HlyA may well be common to other members of this family.


Subject(s)
Calcium/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Hemolysin Proteins/metabolism , Amino Acid Substitution , Calcium/chemistry , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Mutation, Missense , Protein Binding , Protein Stability , Protein Structure, Tertiary
10.
FEBS Lett ; 584(9): 1779-86, 2010 May 03.
Article in English | MEDLINE | ID: mdl-20043909

ABSTRACT

This paper reviews the current knowledge on the various mechanisms for transbilayer, or flip-flop, lipid motion in model and cell membranes, enzyme-assisted lipid transfer by flippases, floppases and scramblases is briefly discussed, while non-catalyzed lipid flip-flop is reviewed in more detail. Transbilayer lipid motion may occur as a result of the insertion of foreign molecules (detergents, lipids, or even proteins) in one of the membrane leaflets. It may also be the result of the enzymatic generation of lipids, e.g. diacylglycerol or ceramide, at one side of the membrane. Transbilayer motion rates decrease in the order diacylglycerol>>ceramide>>phospholipids. Ceramide, but not diacylglycerol, can induce transbilayer motion of other lipids, and bilayer scrambling. Transbilayer lipid diffusion and bilayer scrambling are defined as two conceptually and mechanistically different processes. The mechanism of scrambling appears to be related to local instabilities caused by the non-lamellar ceramide molecule, or by other molecules that exhibit a relatively slow flip-flop rate, when asymmetrically inserted or generated in one of the monolayers in a cell or model membrane.


Subject(s)
Cell Membrane/metabolism , Lipid Metabolism/physiology , Membrane Fluidity/physiology , Membrane Lipids/metabolism , Animals , Biological Transport/physiology , Diffusion , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Lipids/physiology , Molecular Dynamics Simulation , Motion , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/physiology
11.
J Cell Mol Med ; 12(3): 829-75, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18266954

ABSTRACT

Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.


Subject(s)
Membrane Lipids/chemistry , Membrane Lipids/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Animals , Drug Therapy , Humans , Models, Biological , Molecular Structure
12.
J Biol Chem ; 282(16): 11827-35, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17324923

ABSTRACT

alpha-Hemolysin (HlyA) from Escherichia coli is a protein toxin (1024 amino acids) that targets eukaryotic cell membranes, causing loss of the permeability barrier. HlyA consists of two main regions, an N-terminal domain rich in amphipathic helices, and a C-terminal Ca(2+)-binding domain containing a Gly- and Asp-rich nonapeptide repeated in tandem 11-17 times. The latter is called the RTX domain and gives its name to the RTX protein family. It had been commonly assumed that membrane interaction occurred mainly if not exclusively through the amphipathic helix domain. However, we have cloned and expressed the C-terminal region of HlyA, containing the RTX domain plus a few stabilizing sequences, and found that it is a potent surface-active molecule. The isolated domain binds Ca(2+) with about the same affinity (apparent K(0.5) approximately 150 microM) as the parent protein HlyA, and Ca(2+) binding induces in turn a more compact folding with an increased proportion of beta-sheet structure. Both with and without Ca(2+) the C-terminal region of HlyA can interact with lipid monolayers spread at an air-water interface. However, the C-terminal domain by itself is devoid of membrane lytic properties. The present results can be interpreted in the light of our previous studies that involved in receptor binding a peptide in the C-terminal region of HlyA. We had also shown experimentally the distinction between reversible membrane adsorption and irreversible lytic insertion of the toxin. In this context, the present data allow us to propose that both major domains of HlyA are directly involved in membrane-toxin interaction, the nonapeptide repeat, calcium-binding RTX domain being responsible for the early stages of HlyA docking to the target membrane.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/physiology , Hemolysin Proteins/chemistry , Hemolysin Proteins/physiology , Adsorption , Air , Calcium/chemistry , Cell Membrane/metabolism , Circular Dichroism , Kinetics , Lipids/chemistry , Liposomes/chemistry , Mutation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Spectrophotometry , Water/chemistry
13.
J Biol Chem ; 281(9): 5461-7, 2006 Mar 03.
Article in English | MEDLINE | ID: mdl-16377616

ABSTRACT

Escherichia coli alpha-hemolysin (HlyA) is a protein exotoxin that binds and lyses eukaryotic cell and model membranes in the presence of calcium. Previous studies have been able to distinguish between reversible toxin binding to the membrane and irreversible insertion into the lipid matrix. Membrane lysis occurs as the combined effect of protein insertion plus a transient perturbation of the membrane bilayer structure. In the past, insertion and bilayer perturbation have not been experimentally dissected. This has now been achieved by studying HlyA penetration into lipid monolayers at the air-water interface, in which three-dimensional effects (of the kind required to break down the bilayer permeability barrier) cannot occur. The study of native HlyA, together with the nonlytic precursor pro-HlyA, and of different mutants demonstrates that although some nonlytic variants (e.g. pro-HlyA) exhibit very low levels of insertion, others (e.g. the nonlytic mutant HlyA H859N) insert even more strongly than the lytic wild type. These results show that insertion does not necessarily lead to membrane lysis, i.e. that insertion and lysis are not "coupled" phenomena. Millimolar levels of Ca(2+), which are essential for the lytic activity, cause an extra degree of insertion but only in the case of the lytic forms of HlyA.


Subject(s)
Cell Membrane/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Hemolysin Proteins/metabolism , Adsorption , Calcium/metabolism , Escherichia coli Proteins/genetics , Hemolysin Proteins/genetics , Lipids/chemistry , Liposomes/chemistry , Liposomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...