Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938160

ABSTRACT

The flowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, i.e. the ability of a genotype to display different phenotypes in response to environmental variations. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria ×ananassa) and modifies its QTL effects. To this end, we used a bi-parental segregating population grown for two years at widely divergent latitudes (5 European countries) and combined climatic variables with genomic data (Affymetrix® SNP array). Examination, using different phenological models, of the response of FT to photoperiod, temperature and global radiation, indicated that temperature is the main driver of FT in strawberry. We next characterized in the segregating population the phenotypic plasticity of FT by using three statistical approaches that generated plasticity parameters including reaction norm parameters. We detected 25 FT QTL summarized into 10 unique QTL. Mean values and plasticity parameters QTL were co-localized in three of them, including the major 6D_M QTL whose effect is strongly modulated by temperature. The design and validation of a genetic marker for the 6D_M QTL offers great potential for breeding programs, for example for selecting early-flowering strawberry varieties well adapted to different environmental conditions.

2.
Plant J ; 116(5): 1201-1217, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37597203

ABSTRACT

Woodland strawberry (Fragaria vesca subsp. vesca) is a wild relative of cultivated strawberry (F. × ananassa) producing small and typically conical fruits with an intense flavor and aroma. The wild strawberry species, F. vesca, is a rich resource of genetic and metabolic variability, but its diversity remains largely unexplored and unexploited. In this study, we aim for an in-depth characterization of the fruit complex volatilome by GC-MS as well as the fruit size and shape using a European germplasm collection that represents the continental diversity of the species. We report characteristic volatilome footprints and fruit phenotypes of specific geographical areas. Thus, this study uncovers phenotypic variation linked to geographical distribution that will be valuable for further genetic studies to identify candidate genes or develop markers linked to volatile compounds or fruit shape and size traits.


Subject(s)
Fragaria , Fragaria/genetics , Fragaria/metabolism , Fruit/genetics , Fruit/metabolism , Phenotype , Gas Chromatography-Mass Spectrometry
3.
Hortic Res ; 10(3): uhad006, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36938573

ABSTRACT

Strawberry (Fragaria × ananassa) fruits are an excellent source of L-ascorbic acid (AsA), a powerful antioxidant for plants and humans. Identifying the genetic components underlying AsA accumulation is crucial for enhancing strawberry nutritional quality. Here, we unravel the genetic architecture of AsA accumulation using an F1 population derived from parental lines 'Candonga' and 'Senga Sengana', adapted to distinct Southern and Northern European areas. To account for environmental effects, the F1 and parental lines were grown and phenotyped in five locations across Europe (France, Germany, Italy, Poland and Spain). Fruit AsA content displayed normal distribution typical of quantitative traits and ranged five-fold, with significant differences among genotypes and environments. AsA content in each country and the average in all of them was used in combination with 6,974 markers for quantitative trait locus (QTL) analysis. Environmentally stable QTLs for AsA content were detected in linkage group (LG) 3A, LG 5A, LG 5B, LG 6B and LG 7C. Candidate genes were identified within stable QTL intervals and expression analysis in lines with contrasting AsA content suggested that GDP-L-Galactose Phosphorylase FaGGP(3A), and the chloroplast-located AsA transporter gene FaPHT4;4(7C) might be the underlying genetic factors for QTLs on LG 3A and 7C, respectively. We show that recessive alleles of FaGGP(3A) inherited from both parental lines increase fruit AsA content. Furthermore, expression of FaGGP(3A) was two-fold higher in lines with high AsA. Markers here identified represent a useful resource for efficient selection of new strawberry cultivars with increased AsA content.

4.
Front Plant Sci ; 13: 971846, 2022.
Article in English | MEDLINE | ID: mdl-36061771

ABSTRACT

The diploid woodland strawberry (F. vesca) represents an important model for the genus Fragaria. Significant advances in the understanding of the molecular mechanisms regulating seasonal alternance of flower induction and vegetative reproduction has been made in this species. However, this research area has received little attention on the cultivated octoploid strawberry (F. × ananassa) despite its enormous agronomical and economic importance. To advance in the characterization of this intricated molecular network, expression analysis of key flowering time genes was performed both in short and long days and in cultivars with seasonal and perpetual flowering. Analysis of overexpression of FaCO and FaSOC1 in the seasonal flowering 'Camarosa' allowed functional validation of a number of responses already observed in F. vesca while uncovered differences related to the regulation of FaFTs expression and gibberellins (GAs) biosynthesis. While FvCO has been shown to promote flowering and inhibit runner development in the perpetual flowering H4 accession of F. vesca, our study showed that FaCO responds to LD photoperiods as in F. vesca but delayed flowering to some extent, possibly by induction of the strong FaTFL1 repressor in crowns. A contrasting effect on runnering was observed in FaCO transgenic plants, some lines showing reduced runner number whereas in others runnering was slightly accelerated. We demonstrate that the role of the MADS-box transcription factor FaSOC1 as a strong repressor of flowering and promoter of vegetative growth is conserved in woodland and cultivated strawberry. Our study further indicates an important role of FaSOC1 in the photoperiodic repression of FLOWERING LOCUS T (FT) genes FaFT2 and FaFT3 while FaTFL1 upregulation was less prominent than that observed in F. vesca. In our experimental conditions, FaSOC1 promotion of vegetative growth do not require induction of GA biosynthesis, despite GA biosynthesis genes showed a marked photoperiodic upregulation in response to long days, supporting GA requirement for the promotion of vegetative growth. Our results also provided insights into additional factors, such as FaTEM, associated with the vegetative developmental phase that deserve further characterization in the future.

5.
Front Plant Sci ; 12: 688481, 2021.
Article in English | MEDLINE | ID: mdl-34512686

ABSTRACT

Autophagy is a catabolic and recycling pathway that maintains cellular homeostasis under normal growth and stress conditions. Two major types of autophagy, microautophagy and macroautophagy, have been described in plants. During macroautophagy, cellular content is engulfed by a double-membrane vesicle called autophagosome. This vesicle fuses its outer membrane with the tonoplast and releases the content into the vacuole for degradation. During certain developmental processes, autophagy is enhanced by induction of several autophagy-related genes (ATG genes). Autophagy in crop development has been studied in relation to leaf senescence, seed and reproductive development, and vascular formation. However, its role in fruit ripening has only been partially addressed. Strawberry is an important berry crop, representative of non-climacteric fruit. We have analyzed the occurrence of autophagy in developing and ripening fruits of the cultivated strawberry. Our data show that most ATG genes are conserved in the genome of the cultivated strawberry Fragaria x ananassa and they are differentially expressed along the ripening of the fruit receptacle. ATG8-lipidation analysis proves the presence of two autophagic waves during ripening. In addition, we have confirmed the presence of autophagy at the cellular level by the identification of autophagy-related structures at different stages of the strawberry ripening. Finally, we show that blocking autophagy either biochemically or genetically dramatically affects strawberry growth and ripening. Our data support that autophagy is an active and essential process with different implications during strawberry fruit ripening.

6.
Hortic Res ; 8(1): 58, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33750764

ABSTRACT

The strawberry Fra a 1 proteins belong to the class 10 Pathogenesis-Related (PR-10) superfamily. In strawberry, a large number of members have been identified, but only a limited number is expressed in the fruits. In this organ, Fra a 1.01 and Fra a 1.02 are the most abundant Fra proteins in the green and red fruits, respectively, however, their function remains unknown. To know the function of Fra a 1.02 we have generated transgenic lines that silence this gene, and performed metabolomics, RNA-Seq, and hormonal assays. Previous studies associated Fra a 1.02 to strawberry fruit color, but the analysis of anthocyanins in the ripe fruits showed no diminution in their content in the silenced lines. Gene ontology (GO) analysis of the genes differentially expressed indicated that oxidation/reduction was the most represented biological process. Redox state was not apparently altered since no changes were found in ascorbic acid and glutathione (GSH) reduced/oxidized ratio, but GSH content was reduced in the silenced fruits. In addition, a number of glutathione-S-transferases (GST) were down-regulated as result of Fra a 1.02-silencing. Another highly represented GO category was transport which included a number of ABC and MATE transporters. Among the regulatory genes differentially expressed WRKY33.1 and WRKY33.2 were down-regulated, which had previously been assigned a role in strawberry plant defense. A reduced expression of the VQ23 gene and a diminished content of the hormones JA, SA, and IAA were also found. These data might indicate that Fra a 1.02 participates in the defense against pathogens in the ripe strawberry fruits.

7.
Sci Rep ; 10(1): 20197, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33214566

ABSTRACT

Phenylpropanoids are a large class of plant secondary metabolites, which play essential roles in human health mainly associated with their antioxidant activity. Strawberry (Fragaria × ananassa) is a rich source of phytonutrients, including phenylpropanoids, which have been shown to have beneficial effects on human health. In this study, using the F. × ananassa '232' × '1392' F1 segregating population, we analyzed the genetic control of individual phenylpropanoid metabolites, total polyphenol content (TPC) and antioxidant capacity (TEAC) in strawberry fruit over two seasons. We have identified a total of 7, 9, and 309 quantitative trait loci (QTL) for TPC, TEAC and for 77 polar secondary metabolites, respectively. Hotspots of stable QTL for health-related antioxidant compounds were detected on linkage groups LG IV-3, LG V-2 and V-4, and LG VI-1 and VI-2, where associated markers represent useful targets for marker-assisted selection of new varieties with increased levels of antioxidant secondary compounds. Moreover, differential expression of candidate genes for major and stable mQTLs was studied in fruits of contrasting lines in important flavonoids. Our results indicate that higher expression of FaF3'H, which encodes the flavonoid 3'-hydroxylase, is associated with increased content of these important flavonoids.


Subject(s)
Antioxidants/metabolism , Fragaria/genetics , Fruit/metabolism , Phytochemicals/genetics , Polyphenols/genetics , Chromosome Mapping , Fragaria/metabolism , Genotype , Phytochemicals/metabolism , Polyphenols/metabolism , Quantitative Trait Loci
8.
Plant Cell ; 32(12): 3723-3749, 2020 12.
Article in English | MEDLINE | ID: mdl-33004617

ABSTRACT

The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F ×ananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.


Subject(s)
Anthocyanins/metabolism , Fragaria/genetics , Genetic Variation , Plant Proteins/metabolism , Alleles , Diploidy , Fragaria/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Proteins/genetics , Polyploidy , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Plant Biotechnol J ; 18(4): 929-943, 2020 04.
Article in English | MEDLINE | ID: mdl-31533196

ABSTRACT

FaMADS9 is the strawberry (Fragaria x ananassa) gene that exhibits the highest homology to the tomato (Solanum lycopersicum) RIN gene. Transgenic lines were obtained in which FaMADS9 was silenced. The fruits of these lines did not show differences in basic parameters, such as fruit firmness or colour, but exhibited lower Brix values in three of the four independent lines. The gene ontology MapMan category that was most enriched among the differentially expressed genes in the receptacles at the white stage corresponded to the regulation of transcription, including a high percentage of transcription factors and regulatory proteins associated with auxin action. In contrast, the most enriched categories at the red stage were transport, lipid metabolism and cell wall. Metabolomic analysis of the receptacles of the transformed fruits identified significant changes in the content of maltose, galactonic acid-1,4-lactone, proanthocyanidins and flavonols at the green/white stage, while isomaltose, anthocyanins and cuticular wax metabolism were the most affected at the red stage. Among the regulatory genes that were differentially expressed in the transgenic receptacles were several genes previously linked to flavonoid metabolism, such as MYB10, DIV, ZFN1, ZFN2, GT2, and GT5, or associated with the action of hormones, such as abscisic acid, SHP, ASR, GTE7 and SnRK2.7. The inference of a gene regulatory network, based on a dynamic Bayesian approach, among the genes differentially expressed in the transgenic receptacles at the white and red stages, identified the genes KAN1, DIV, ZFN2 and GTE7 as putative targets of FaMADS9. A MADS9-specific CArG box was identified in the promoters of these genes.


Subject(s)
Fragaria/genetics , Fruit/growth & development , MADS Domain Proteins/genetics , Plant Proteins/genetics , Bayes Theorem , Fragaria/growth & development , Gene Expression Regulation, Plant , Gene Silencing , Metabolome , Plants, Genetically Modified
10.
Hortic Res ; 6: 4, 2019.
Article in English | MEDLINE | ID: mdl-30603090

ABSTRACT

Improvement of nutritional and organoleptic quality of fruits is a key goal in current strawberry breeding programs. The ratio of sugars to acids is a determinant factor contributing to fruit liking, although different sugars and acids contribute in varying degrees to this complex trait. A segregating F1 population of 95 individuals, previously characterized for several fruit quality characters, was used to map during 2 years quantitative trait loci (QTL) for 50 primary metabolites, l-ascorbic acid (L-AA) and other related traits such as soluble solid content (SSC), titratable acidity (TA), and pH. A total of 133 mQTL were detected above the established thresholds for 44 traits. Only 12.9% of QTL were detected in the 2 years, suggesting a large environmental influence on primary metabolite content. An objective of this study was the identification of key metabolites that were associated to the overall variation in SSC and acidity. As it was observed in previous studies, a number of QTL controlling several metabolites and traits were co-located in homoeology group V (HG V). mQTL controlling a large variance in raffinose, sucrose, succinic acid, and L-AA were detected in approximate the same chromosomal regions of different homoeologous linkage groups belonging to HG V. Candidate genes for selected mQTL are proposed based on their co-localization, on the predicted function, and their differential gene expression among contrasting F1 progeny lines. RNA-seq analysis from progeny lines contrasting in L-AA content detected 826 differentially expressed genes and identified Mannose-6-phosphate isomerase, FaM6PI1, as a candidate gene contributing to natural variation in ascorbic acid in strawberry fruit.

11.
J Agric Food Chem ; 66(3): 581-592, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29291263

ABSTRACT

Food fortification through the increase and/or modulation of bioactive compounds has become a major goal for preventing several diseases, including cancer. Here, strawberry lines of cv. Calypso transformed with a construct containing an anthocyanidin synthase (ANS) gene were produced to study the effects on anthocyanin biosynthesis, metabolism, and transcriptome. Three strawberry ANS transgenic lines (ANS L5, ANS L15, and ANS L18) were analyzed for phytochemical composition and total antioxidant capacity (TAC), and their fruit extracts were assessed for cytotoxic effects on hepatocellular carcinoma. ANS L18 fruits had the highest levels of total phenolics and flavonoids, while those of ANS L15 had the highest anthocyanin concentration; TAC positively correlated with total polyphenol content. Fruit transcriptome was also specifically affected in the polyphenol biosynthesis and in other related metabolic pathways. Fruit extracts of all lines exerted cytotoxic effects in a dose/time-dependent manner, increasing cellular apoptosis and free radical levels and impairing mitochondrial functionality.


Subject(s)
Antioxidants/analysis , Fragaria/enzymology , Fruit/chemistry , Liver Neoplasms/drug therapy , Oxygenases/genetics , Plant Proteins/genetics , Anthocyanins/analysis , Anthocyanins/biosynthesis , Anthocyanins/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis , Fragaria/chemistry , Fragaria/genetics , Fruit/enzymology , Fruit/genetics , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/physiopathology , Mitochondria/drug effects , Mitochondria/metabolism , Oxygenases/metabolism , Plant Proteins/metabolism , Polyphenols/analysis , Polyphenols/metabolism , Polyphenols/pharmacology
12.
Mol Breed ; 37(10): 131, 2017.
Article in English | MEDLINE | ID: mdl-29070959

ABSTRACT

Flavor improvement is currently one of the most important goals for strawberry breeders. At the same time, it is one of the most complex traits to improve, involving the balanced combination of several desired characteristics such as high sweetness, moderate acidity, and the appropriate combination of aroma compounds that are beginning to be delineated in consumer tests. DNA-informed breeding will expedite the selection of complex traits, such as flavor, over traditional phenotypic evaluation, particularly when markers linked to several traits of interests are combined during the breeding process. Natural variation in mesifurane and γ-decalactone, two key volatile compounds providing sweet Sherry and fresh peach-like notes to strawberry fruits, is controlled by the FaOMT and FaFAD1 genes, respectively. In this study, we have optimized a simple PCR test for combined analysis of these genes and determined a prediction accuracy above 91% using a set of 71 diverse strawberry accessions. This high accuracy in predicting the presence of these important volatiles combined with the simplicity of the analytical methodology makes this DNA test an efficient tool for its implementation in current strawberry-breeding programs for the selection of new strawberry cultivars with superior flavor.

13.
Sci Rep ; 7(1): 13737, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29062051

ABSTRACT

RNA-seq has been used to perform global expression analysis of the achene and the receptacle at four stages of fruit ripening, and of the roots and leaves of strawberry (Fragaria × ananassa). About 967 million reads and 191 Gb of sequence were produced, using Illumina sequencing. Mapping the reads in the related genome of the wild diploid Fragaria vesca revealed differences between the achene and receptacle development program, and reinforced the role played by ethylene in the ripening receptacle. For the strawberry transcriptome assembly, a de novo strategy was followed, generating separate assemblies for each of the ten tissues and stages sampled. The Trinity program was used for these assemblies, resulting in over 1.4 M isoforms. Filtering by a threshold of 0.3 FPKM, and doing Blastx (E-value < 1 e-30) against the UniProt database of plants reduced the number to 472,476 isoforms. Their assembly with the MIRA program (90% homology) resulted in 26,087 contigs. From these, 91.34 percent showed high homology to Fragaria vesca genes and 87.30 percent Fragaria iinumae (BlastN E-value < 1 e-100). Mapping back the reads on the MIRA contigs identified polymorphisms at nucleotide level, using FREEBAYES, as well as estimate their relative abundance in each sample.


Subject(s)
Fragaria/genetics , Fruit/growth & development , Gene Expression Profiling , Fragaria/growth & development , Fruit/genetics , Genome, Plant/genetics , Plant Proteins/genetics , Polymorphism, Genetic
15.
Front Plant Sci ; 8: 889, 2017.
Article in English | MEDLINE | ID: mdl-28611805

ABSTRACT

The role of auxin in ripening strawberry (Fragaria ×ananassa) fruits has been restricted to the early stages of development where the growth of the receptacle is dependent on the delivery of auxin from the achenes. At later stages, during enlargement of the receptacle, other hormones have been demonstrated to participate to different degrees, from the general involvement of gibberellins and abscisic acid to the more specific of ethylene. Here we report the involvement of auxin at the late stages of receptacle ripening. The auxin content of the receptacle remains constant during ripening. Analysis of the transcriptome of ripening strawberry fruit revealed the changing expression pattern of the genes of auxin synthesis, perception, signaling and transport along with achene and receptacle development from the green to red stage. Specific members of the corresponding gene families show active transcription in the ripe receptacle. For the synthesis of auxin, two genes encoding tryptophan aminotransferases, FaTAA1 and FaTAR2, were expressed in the red receptacle, with FaTAR2 expression peaking at this stage. Transient silencing of this gene in ripening receptacle was accompanied by a diminished responsiveness to auxin. The auxin activity in the ripening receptacle is supported by the DR5-directed expression of a GUS reporter gene in the ripening receptacle of DR5-GUS transgenic strawberry plants. Clustering by co-expression of members of the FaAux/IAA and FaARF families identified five members whose transcriptional activity was increased with the onset of receptacle ripening. Among these, FaAux/IAA11 and FaARF6a appeared, by their expression level and fold-change, as the most likely candidates for their involvement in the auxin activity in the ripening receptacle. The association of the corresponding ARF6 gene in Arabidopsis to cell elongation constitutes a suggestive hypothesis for FaARF6a involvement in the same cellular process in the growing and ripening receptacle.

16.
Front Plant Sci ; 7: 240, 2016.
Article in English | MEDLINE | ID: mdl-26973682

ABSTRACT

Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

17.
PLoS One ; 10(12): e0144960, 2015.
Article in English | MEDLINE | ID: mdl-26675207

ABSTRACT

Cultivated strawberry (Fragaria × ananassa) is a genetically complex allo-octoploid crop with 28 pairs of chromosomes (2n = 8x = 56) for which a genome sequence is not yet available. The diploid Fragaria vesca is considered the donor species of one of the octoploid sub-genomes and its available genome sequence can be used as a reference for genomic studies. A wide number of strawberry cultivars are stored in ex situ germplasm collections world-wide but a number of previous studies have addressed the genetic diversity present within a limited number of these collections. Here, we report the development and application of two platforms based on the implementation of Diversity Array Technology (DArT) markers for high-throughput genotyping in strawberry. The first DArT microarray was used to evaluate the genetic diversity of 62 strawberry cultivars that represent a wide range of variation based on phenotype, geographical and temporal origin and pedigrees. A total of 603 DArT markers were used to evaluate the diversity and structure of the population and their cluster analyses revealed that these markers were highly efficient in classifying the accessions in groups based on historical, geographical and pedigree-based cues. The second DArTseq platform took benefit of the complexity reduction method optimized for strawberry and the development of next generation sequencing technologies. The strawberry DArTseq was used to generate a total of 9,386 SNP markers in the previously developed '232' × '1392' mapping population, of which, 4,242 high quality markers were further selected to saturate this map after several filtering steps. The high-throughput platforms here developed for genotyping strawberry will facilitate genome-wide characterizations of large accessions sets and complement other available options.


Subject(s)
Chromosome Mapping , Fragaria/genetics , Genetic Linkage , Genetic Variation , Genomics/methods , Cluster Analysis , Diploidy , Genome, Plant , High-Throughput Nucleotide Sequencing , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Polyploidy
18.
New Phytol ; 208(2): 482-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26010039

ABSTRACT

The receptacle of the strawberry (Fragaria × ananassa) fruit accounts for the main properties of the ripe fruit for human consumption. As it ripens, it undergoes changes similar to other fruits in sugar : acid ratio, volatile production and cell wall softening. However, the main regulators of this process have not yet been reported. The white stage marks the initiation of the ripening process, and we had previously reported a peak of expression for a FaGAMYB gene. Transient silencing of FaGAMYB using RNAi and further determination of changes in global gene expression by RNAseq, and composition of primary and secondary metabolites have been used to investigate the role played by this gene during the development of the receptacle. Down-regulation of FaGAMYB caused an arrest in the ripening of the receptacle and inhibited colour formation. Consistent with this, several transcription factors associated with the regulation of flavonoid biosynthetic pathway showed altered expression. FaGAMYB silencing also caused a reduction of ABA biosynthesis and sucrose content. Interestingly, exogenous ABA application to the RNAI-transformed receptacle reversed most defects caused by FaGAMYB down-regulation. The study assigns a key regulatory role to FaGAMYB in the initiation of strawberry receptacle ripening and acting upstream of the known regulator ABA.


Subject(s)
Fragaria/growth & development , Fruit/growth & development , Plant Proteins/metabolism , Abscisic Acid/pharmacology , Crosses, Genetic , Down-Regulation/drug effects , Down-Regulation/genetics , Fragaria/genetics , Fragaria/physiology , Fruit/drug effects , Fruit/genetics , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Models, Biological , RNA Interference/drug effects , Real-Time Polymerase Chain Reaction , Secondary Metabolism/drug effects , Up-Regulation/genetics
19.
BMC Genomics ; 15: 218, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24742100

ABSTRACT

BACKGROUND: Understanding the basis for volatile organic compound (VOC) biosynthesis and regulation is of great importance for the genetic improvement of fruit flavor. Lactones constitute an essential group of fatty acid-derived VOCs conferring peach-like aroma to a number of fruits including peach, plum, pineapple and strawberry. Early studies on lactone biosynthesis suggest that several enzymatic pathways could be responsible for the diversity of lactones, but detailed information on them remained elusive. In this study, we have integrated genetic mapping and genome-wide transcriptome analysis to investigate the molecular basis of natural variation in γ-decalactone content in strawberry fruit. RESULTS: As a result, the fatty acid desaturase FaFAD1 was identified as the gene underlying the locus at LGIII-2 that controls γ-decalactone production in ripening fruit. The FaFAD1 gene is specifically expressed in ripe fruits and its expression fully correlates with the presence of γ-decalactone in all 95 individuals of the mapping population. In addition, we show that the level of expression of FaFAH1, with similarity to cytochrome p450 hydroxylases, significantly correlates with the content of γ-decalactone in the mapping population. The analysis of expression quantitative trait loci (eQTL) suggests that the product of this gene also has a regulatory role in the biosynthetic pathway of lactones. CONCLUSIONS: Altogether, this study provides mechanistic information of how the production of γ-decalactone is naturally controlled in strawberry, and proposes enzymatic activities necessary for the formation of this VOC in plants.


Subject(s)
Chromosome Mapping , Fragaria/genetics , Lactones/metabolism , Quantitative Trait Loci , Sequence Analysis, RNA , Amino Acid Sequence , Fatty Acid Desaturases/classification , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fruit/genetics , Genome, Plant , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Up-Regulation/genetics
20.
Plant Physiol ; 159(2): 851-70, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22474217

ABSTRACT

Improvement of strawberry (Fragaria × ananassa) fruit flavor is an important goal in breeding programs. To investigate genetic factors controlling this complex trait, a strawberry mapping population derived from genotype '1392', selected for its superior flavor, and '232' was profiled for volatile compounds over 4 years by headspace solid phase microextraction coupled to gas chromatography and mass spectrometry. More than 300 volatile compounds were detected, of which 87 were identified by comparison of mass spectrum and retention time to those of pure standards. Parental line '1392' displayed higher volatile levels than '232', and these and many other compounds with similar levels in both parents segregated in the progeny. Cluster analysis grouped the volatiles into distinct chemically related families and revealed a complex metabolic network underlying volatile production in strawberry fruit. Quantitative trait loci (QTL) detection was carried out over 3 years based on a double pseudo-testcross strategy. Seventy QTLs covering 48 different volatiles were detected, with several of them being stable over time and mapped as major QTLs. Loci controlling γ-decalactone and mesifurane content were mapped as qualitative traits. Using a candidate gene approach we have assigned genes that are likely responsible for several of the QTLs. As a proof of concept we show that one homoeolog of the O-methyltransferase gene (FaOMT) is the locus responsible for the natural variation of mesifurane content. Sequence analysis identified 30 bp in the promoter of this FaOMT homoeolog containing putative binding sites for basic/helix-loop-helix, MYB, and BZIP transcription factors. This polymorphism fully cosegregates with both the presence of mesifurane and the high expression of FaOMT during ripening.


Subject(s)
Flavoring Agents/chemistry , Fragaria/genetics , Fruit/enzymology , Furans/chemistry , Methyltransferases/isolation & purification , Quantitative Trait Loci , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , Alleles , Base Sequence , Chromosome Mapping , Fragaria/enzymology , Fruit/genetics , Genes, Plant , Genetic Variation , Genomic Instability , Methyltransferases/chemistry , Methyltransferases/genetics , Molecular Sequence Data , Principal Component Analysis , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL