Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Sci Prog ; 107(2): 368504241253695, 2024.
Article in English | MEDLINE | ID: mdl-38801654

ABSTRACT

The current emphasis within the cosmetic market on sustainable ingredients has heightened the exploration of new sources for natural, active components. Actinomycetota, recognized for producing pigments with bioactive potential, offer promising functional cosmetic ingredients. This study aimed to optimize pigment and antioxidant metabolite production from the Gordonia hongkongensis strain EUFUS-Z928 by implementing the Plackett-Burman experimental design and response surface methodology. Extracts derived from this strain exhibited no cytotoxic activity against human primary dermal fibroblast (HDFa, ATCC® PCS-201-012™, Primary Dermal Fibroblast; Normal, Human, Adult). Eight variables, including inoculum concentration, carbon and nitrogen source concentration, NaCl concentration, pH, incubation time, temperature, and stirring speed, were analyzed using the Plackett-Burman experimental design. Subsequently, factors significantly influencing pigment and antioxidant metabolite production, such as temperature, inoculum concentration, and agitation speed, were further optimized using response surface methodology and Box-Behnken design. The results demonstrated a substantial increase in absorbance (from 0.091 to 0.32), DPPH radical scavenging capacity (from 27.60% to 84.61%), and ABTS radical scavenging capacity (from 17.39% to 79.77%) compared to responses obtained in the isolation medium. The validation of the mathematical model accuracy exceeded 90% for all cases. Furthermore, liquid chromatography coupled with mass spectrometry (LC-MS) facilitated the identification of compounds potentially responsible for enhanced pigment production and antioxidant capacity in extracts derived from G. hongkongensis. Specifically, six carotenoids, red-orange pigments with inherent antioxidant capacity, were identified as the main enhanced compounds. This comprehensive approach effectively optimized the culture conditions and medium of a G. hongkongensis strain, resulting in enhanced carotenoid production and antioxidant capacity. Beyond identifying bioactive compounds and their potential cosmetic applications, this study offers insights into the broader industrial applicability of these extracts. It underscores the potential of G. hongkongensis and hints at the future utilization of other untapped sources of rare actinomycetes within the industry.


Subject(s)
Antioxidants , Carotenoids , Antioxidants/metabolism , Antioxidants/chemistry , Carotenoids/metabolism , Carotenoids/chemistry , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Gordonia Bacterium/metabolism
2.
ScientificWorldJournal ; 2022: 6420003, 2022.
Article in English | MEDLINE | ID: mdl-36419778

ABSTRACT

Polyvinyl chloride (PVC) is widely used in industrial applications, such as construction and clothing, owing to its chemical, physical, and environmental resistance. Owing to the previous characteristics, PVC is the third most consumed plastic worldwide and, consequently, an increasing waste accumulation-related problem. The current study evaluated an in-house collection of 61 Actinobacteria strains for PVC resin biodegradation. Weight loss percentage was measured after the completion of incubation. Thermo-gravimetric analysis was subsequently performed using the PVC incubated with the three strains exhibiting the highest weight loss. GC-MS and ionic exchange chromatography analyses were also performed using the culture media supernatant of these three strains. After incubation, 14 strains had a PVC weight loss percentage higher than 50% in ISP-2 broth. These 14 strains were identified as Streptomyces strains. Strains 208, 250, and 290 showed the highest weight loss percentages (57.6-61.5% range). The thermal stability of PVC after bacterial exposure using these three strains was evaluated, and a modification of the representative degradation stages of nonincubated PVC was observed. Additionally, GC-MS analysis revealed the presence of aromatic compounds in the inoculated culture media, and ionic exchange chromatography showed chloride release in the supernatant. A mathematical relation between culture conditions and PVC weight loss was also found for strains 208 and 290, showing an accuracy up to 97.99%. These results highlight the potential of the freshwater-derived Streptomyces strains as candidates for the PVC biodegradation strategy and constitute the first approach to a waste management control scale-up process.


Subject(s)
Polyvinyl Chloride , Streptomyces , Humans , Polyvinyl Chloride/chemistry , Prospective Studies , Fresh Water , Culture Media , Weight Loss
3.
BioTech (Basel) ; 11(4)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36412754

ABSTRACT

Members of the phylum Actinomycetota (formerly Actinobacteria) have historically been the most prolific providers of small bioactive molecules. Although the genus Streptomyces is the best-known member for this issue, other genera, such as Gordonia, have shown interesting potential in their specialized metabolism. Thus, we combined herein the result of a comprehensive literature survey on metabolites derived from Gordonia strains with a comparative genomic analysis to examine the potential of the specialized metabolism of the genus Gordonia. Thirty Gordonia-derived compounds of different classes were gathered (i.e., alkaloids, amides, phenylpropanoids, and terpenoids), exhibiting antimicrobial and cytotoxic activities, and several were also isolated from Streptomyces (e.g., actinomycin, nocardamin, diolmycin A1). With the genome data, we estimated an open pan-genome of 57,901 genes, most of them being part of the cloud genome. Regarding the BGCs content, 531 clusters were found, including Terpenes, RiPP-like, and NRPS clusters as the most frequent clusters. Our findings demonstrated that Gordonia is a poorly studied genus in terms of its specialized metabolism production and potential applications. Nevertheless, given their BGCs content, Gordonia spp. are a valuable biological resource that could expand the chemical spectrum of the phylum Actinomycetota, involving novel BGCs for inspiring innovative outlines for synthetic biology and further use in biotechnological initiatives. Therefore, further studies and more efforts should be made to explore different environments and evaluate other bioactivities.

4.
J Appl Microbiol ; 133(3): 2027-2038, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35818766

ABSTRACT

AIMS: This work aims to characterize the microbial diversity of the encrusting sponge Cliona varians, a pore-forming and coral reef bioeroding marine sponge of emerging spread related to ocean acidification. METHODS AND RESULTS: We analysed the microbiome composition by 16S V4 amplicon next-generation sequencing in a community of the bioeroding coral reef encrusting/excavating marine sponge Cliona varians thriving at the Southern Caribbean Sea. About 87.21% and 6.76% of the sequences retrieved were assigned to the domain Bacteria and Archaea. The most predominant operational taxonomic units were classified as members of the order Rhizobiales and family Nitrosopumilaceae, representing members of not yet characterized genera. Features found strictly conserved in the strain/genomic representatives reported in those microbial taxa are nitrogen fixation and transformation. CONCLUSION: Our results suggest, in accordance with recent results, that these microbiome members and associated functions could be contributing to the biological fitness of the sponge to be able to colonize and bioerode in environments with low access and scarce availability of nitrogen sources. SIGNIFICANCE AND IMPACT OF STUDY: Coral reefs bioresources such as sponge holobionts are intriguing and complex ecosystem units. This study contributes to the knowledge of how C. varians microbiota is composed or shaped, which is crucial to understand its ecological functions.


Subject(s)
Microbiota , Porifera , Animals , Archaea , Caribbean Region , Hydrogen-Ion Concentration , Microbiota/genetics , Porifera/microbiology , Seawater/microbiology
5.
Data Brief ; 42: 108076, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35372653

ABSTRACT

Octocorals are among the most prolific sources of biologically active compounds. A significant part of their specialized metabolites richness is linked to the abundance of their associated microbiota. Consequently, research on the bioprospecting potential of microorganisms associated with these marine invertebrates has gained much interest. Here, we describe the draft genome of Gordonia hongkongensis strain EUFUS-Z928 isolated from the octocoral Eunicea fusca. The genome was assembled de novo from short-read whole-genome sequencing data. Additionally, functional annotation of predicted genes was performed using the RAST tool kit, including genome mining for specialized metabolite biosynthetic gene clusters using the antiSMASH v6.0 tool. The genome sequence data of G. hongkongensis EUFUS-Z928 can provide information for further analysis of the potential biotechnological use of this microorganism and guide the characterization of other related actinobacterial isolates. Likewise, this information increases the analytical capacity for studying the genus Gordonia.

6.
Mar Drugs ; 19(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34940673

ABSTRACT

Sunscreen and sunblock are crucial skincare products to prevent photoaging and photocarcinogenesis through the addition of chemical filters to absorb or block ultraviolet (UV) radiation. However, several sunscreen and sunblock ingredients, mostly UV filters, have been associated with human and environmental safety concerns. Therefore, the exploration and discovery of promising novel sources of efficient and safer compounds with photoprotection-related activities are currently required. Marine invertebrates, particularly their associated microbiota, are promising providers of specialized metabolites with valuable biotechnological applications. Nevertheless, despite Actinobacteria members being a well-known source of bioactive metabolites, their photoprotective potential has been poorly explored so far. Hence, a set of methanolic extracts obtained from Cliona varians-derived actinomycetes was screened regarding their antioxidant and UV-absorbing capacities (i.e., photoprotection-related activities). The active extract-producing strains were identified and classified within genera Streptomyces, Micrococcus, Gordonia, and Promicromonospora. This is the first report of the isolation of these microorganisms from C. varians (an ecologically important Caribbean coral reef-boring sponge). The in vitro cytotoxicity on dermal fibroblasts of oxybenzone and the selected active extracts revealed that oxybenzone exerted a cytotoxic effect, whereas no cytotoxic effect of test extracts was observed. Accordingly, the most active (SPFi > 5, radical scavenging > 50%) and nontoxic (cell viability > 75%) extracts were obtained from Streptomyces strains. Finally, LC-MS-based characterization suggested a broad chemical space within the test strains and agreed with the reported streptomycetes' chemodiversity. The respective metabolite profiling exposed a strain-specific metabolite occurrence, leading to the recognition of potential hits. These findings suggest that marine Streptomyces produce photoprotectants ought to be further explored in skincare applications.


Subject(s)
Actinobacteria , Antioxidants/pharmacology , Porifera , Sunscreening Agents/pharmacology , Animals , Antioxidants/chemistry , Aquatic Organisms , Biphenyl Compounds , Caribbean Region , Coral Reefs , Fibroblasts/drug effects , Humans , Picrates , Sunscreening Agents/chemistry , Ultraviolet Rays
7.
ScientificWorldJournal ; 2021: 1983589, 2021.
Article in English | MEDLINE | ID: mdl-34955690

ABSTRACT

Marine invertebrates are a significant source of biologically active compounds. Recent studies have highlighted the role of microbiota associated with marine invertebrates in the production of bioactive compounds. Corals and sponges are the main marine invertebrates producing bioactive substances, and Symbiodiniaceae dinoflagellates are well-recognized endosymbionts with corals and sponges playing vital functions. The biological properties of Symbiodiniaceae-derived compounds have garnered attention in the past decades owing to their ecological implications and potentiality for bioprospecting initiatives. This study aims to systematically review studies on bioactivities and potential biotechnological applications of Symbiodiniaceae-derived compounds. The PRISMA guidelines were followed. Our study showed that anti-inflammatory and vasoconstrictive activities of Symbiodiniaceae-derived compounds have been the most investigated. However, very few studies have been published, with in vitro culturing of Symbiodiniaceae being the most significant challenge. Therefore, we surveyed for the metabolites reported so far, analyzed their chemodiversity, and discussed approaches to overcome culturing-related limitations.


Subject(s)
Biological Products/pharmacology , Biotechnology , Dinoflagellida/chemistry
8.
Bioengineering (Basel) ; 8(11)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34821720

ABSTRACT

The inherent resistance of synthetic plastics to degradation has led to an increasing challenge of waste accumulation problem and created a pollution issue that can only be addressed with novel complementary methods such as biodegradation. Since biocontrol is a promising eco-friendly option to address this challenge, the identification of suitable biological agents is a crucial requirement. Among the existing options, organisms of the Streptomyces genus have been reported to biodegrade several complex polymeric macromolecules such as chitin, lignin, and cellulose. Therefore, this systematic review aimed to evaluate the potential of Streptomyces strains for the biodegradation of synthetic plastics. The results showed that although Streptomyces strains are widely distributed in different ecosystems in nature, few studies have explored their capacity as degraders of synthetic polymers. Moreover, most of the research in this field has focused on Streptomyces strains with promising biotransforming potential against polyethylene-like polymers. Our findings suggest that this field of study is still in the early stages of development. Moreover, considering the diverse ecological niches associated with Streptomyces, these actinobacteria could serve as complementary agents for plastic waste management and thereby enhance carbon cycle dynamics.

9.
Molecules ; 25(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287235

ABSTRACT

Leishmaniasis is a parasitic morbid/fatal disease caused by Leishmania protozoa. Twelve million people worldwide are appraised to be currently infected, including ca. two million infections each year, and 350 million people in 88 countries are at risk of becoming infected. In Colombia, cutaneous leishmaniasis (CL) is a public health problem in some tropical areas. Therapeutics is based on traditional antileishmanial drugs, but this practice has several drawbacks for patients. Thus, the search for new antileishmanial agents is a serious need, but the lack of adequately funded research programs on drug discovery has hampered its progress. Some Colombian researchers have conducted different research projects focused on the assessment of the antileishmanial activity of naturally occurring and synthetic compounds against promastigotes and/or amastigotes. Results of such studies have separately demonstrated important hits and reasonable potential, but a holistic view of them is lacking. Hence, we present the outcome from a systematic review of the literature (under PRISMA guidelines) on those Colombian studies investigating antileishmanials during the last thirty-two years. In order to combine the general efforts aiming at finding a lead against Leishmania panamensis (one of the most studied and incident parasites in Colombia causing CL) and to recognize structural features of representative compounds, fingerprint-based analyses using conventional machine learning algorithms and clustering methods are shown. Abstraction from such a meta-description led to describe some function-determining molecular features and simplify the clustering of plausible isofunctional hits. This systematic review indicated that the Colombian efforts for the antileishmanials discovery are increasingly intensified, though improvements in the followed pathways must be definitively pursued. In this context, a brief discussion about scope, strengths and limitations of such advances and relationships is addressed.


Subject(s)
Antiprotozoal Agents/therapeutic use , Leishmania/drug effects , Leishmaniasis, Cutaneous/drug therapy , Cheminformatics/methods , Colombia , Drug Discovery/methods , Humans
10.
Molecules ; 25(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679651

ABSTRACT

Sun overexposure is associated with the development of diseases that primarily affect the skin, which can lead to skin cancer. Among the main measures of photoprotection is the use of sunscreens. However, there is currently concern about the reported harmful effects to both humans and the environment due to several of the sunscreen ingredients available on the market. For this reason, the search for and development of new agents with photoprotective properties is required. In searching for these metabolites, researchers have turned their attention to microbial sources, especially the microbiota in unusual hostile environments. Among the diverse microorganisms available in nature, Actinobacteria and specifically Streptomyces, have been shown to be a source of metabolites with various biological activities of interest, such as antimicrobial, antitumor and immunomodulator activities. Herein, we present the results of a systematic review of the literature in which Streptomyces isolates were studied as a source of compounds with photoprotective properties. A meta-analysis of the structure-property and structure-activity relationships of those metabolites identified in the qualitative analysis phase was also carried out. These findings indicate that Streptomyces are a source of metabolites with potential applications in the development of new, safe and more eco-friendly sunscreens.


Subject(s)
Biological Products/pharmacology , Streptomyces/metabolism , Sunscreening Agents/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Biological Products/chemistry , Biological Products/metabolism , Humans , Secondary Metabolism , Structure-Activity Relationship , Sunscreening Agents/chemistry , Sunscreening Agents/metabolism , Ultraviolet Rays
11.
Exp Parasitol ; 129(1): 31-5, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21684278

ABSTRACT

Leishmaniasis is a group of endemic diseases produced by infection with Leishmania parasites and affects tropical and subtropical regions of the world. Due to the severe problems related to the treatment of this condition (resistance and toxicity), further studies are needed to evaluate new antileishmanial compounds. The activity of antileishmanial prototypes should be analyzed in models that allow a better interpretation of the findings with respect to natural infection. In this sense, the use of an infection model with macrophages and dendritic cells is a better than using promastigotes alone, in order to establish the potential leishmanicidal activity of a prototype compound. For infection analysis, staining with polychromatic dyes such as Giemsa plus microscopic examination is the gold standard. However, it is common to find problems associated with color uniformity, expertise of the observer, sensitivity and specificity of the technique. For this reason, it's necessary to develop tools and protocols to overcome such limitations. This study assessed the utility of the SYBR® Safe fluorescent dye, considering its affinity for nucleic acids as a useful property for staining the nucleus and kinetoplast of Leishmania parasites within an infected cell. Infection (and subsequent treatment) assays were performed in dendritic cells and macrophages infected with Leishmania panamensis parasites to compare SYBR® Safe and Giemsa stain for the same assay. Correlation coefficients were found to be above 0.9 for both techniques; however, unlike Giemsa, SYBR® Safe staining was easier and provided a clearer observation of internalized parasites. These results support the use of SYBR® Safe as a promising tool for evaluating potential antileishmanials given its advantages over the traditional technique.


Subject(s)
Dendritic Cells/parasitology , Fluorescent Dyes , Leishmania guyanensis/isolation & purification , Macrophages/parasitology , Monocytes/parasitology , Azure Stains , Cells, Cultured , Coloring Agents , Humans , Leishmaniasis, Mucocutaneous/diagnosis , Leishmaniasis, Mucocutaneous/parasitology , Reproducibility of Results , Sensitivity and Specificity
12.
Nat Prod Commun ; 6(2): 231-4, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21425681

ABSTRACT

The in vitro leishmanicidal effects of ethanolic extracts and fifteen naturally-occurring compounds (five lignans, eight neolignans, a diterpene and a dihydrochalcone), obtained from Pleurothyrium cinereum and Ocotea macrophylla, were evaluated on promastigotes of Leishmania panamensis and L. braziliensis. In addition, in order to determine the selective action on Leishmania species as a safety principle, in vitro cytotoxicity on J774 cells was also evaluated for test compounds and extracts. One extract and seven compounds showed activity against Leishmania parasites at different levels. Dihydroflavokawin B (8) was found to be the most potent antileishmanial compound on both parasites, whilst (+)-otobaphenol (14), was found to be the most selective compound on L. panamensis.


Subject(s)
Antiprotozoal Agents/pharmacology , Lauraceae/chemistry , Leishmania/drug effects , Plant Extracts/pharmacology , Animals , Cell Line , Leishmania braziliensis/drug effects , Macrophages/drug effects , Mice , Plant Extracts/toxicity , Structure-Activity Relationship
13.
Rev. colomb. ciencias quim. farm ; 39(1): 21-29, jun. 2010. tab
Article in Spanish | LILACS | ID: lil-597426

ABSTRACT

Especies del género Piper son reportadas como promisorias para el tratamiento de enfermedades tropicales. Este estudio evalúa la actividad citotóxica y leishmanicida de extractos y fracciones de diferente polaridad obtenidas de las especies vegetales Piper cumanense (P. cumanense) y Piper holtonii (P. holtonii); se emplearon macrófagos murinos J774 y promastigotes de Leishmania panamensis MHOM/CO/87/UA140. La fracción hexánica (PcH) presentó un efecto leishmanicida con una selectividad de 2 en los modelos in vitro empleados. Esta selectividad permite sugerir una potencial actividad antileishmanial, que amerita seguir siendo explorada.


Piper genus’ species are reported as promissory as tropical diseases treatment. This research showed the cytotoxic and leishmanicidal activity of extracts and fractions of different polarity derived from Piper cumanense (P. cumanense) and Piper holtonii (P. holtoni) on murine macrophages J774 and L. panamensis promastigotes (MHOM/ CO/87/UA140). Hexanic fraction (PcH) exhibited leishmanicidal effect with 2-fold index selectivity in this in vitro model used. These results suggest a potential antileishmanial activity which should be more studied.


Subject(s)
Leishmania , Leishmania guyanensis , Leishmaniasis Vaccines , Piperaceae
SELECTION OF CITATIONS
SEARCH DETAIL
...