Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 17(6): e202300536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616109

ABSTRACT

Information about tissue oxygen saturation (StO2) and other related important physiological parameters can be extracted from diffuse reflectance spectra measured through non-contact imaging. Three analytical optical reflectance models for homogeneous, semi-infinite, tissue have been proposed (Modified Beer-Lambert, Jacques 1999, Yudovsky 2009) but these have not been directly compared for tissue parameter extraction purposes. We compare these analytical models using Monte Carlo (MC) simulated diffuse reflectance spectra and controlled gelatin-based phantoms with measured diffuse reflectance spectra and known ground truth composition parameters. The Yudovsky model performed best against MC simulations and measured spectra of tissue phantoms in terms of goodness of fit and parameter extraction accuracy followed closely by Jacques' model. In this study, Yudovsky's model appeared most robust; however, our results demonstrated that both Yudovsky and Jacques models are suitable for modeling tissue that can be approximated as a single, homogeneous, semi-infinite slab.


Subject(s)
Gelatin , Monte Carlo Method , Phantoms, Imaging , Gelatin/chemistry , Models, Biological , Diffusion , Optical Phenomena
2.
Surg Endosc ; 37(3): 2395-2403, 2023 03.
Article in English | MEDLINE | ID: mdl-36443562

ABSTRACT

BACKGROUND: Single snapshot imaging of optical properties (SSOP) is a relatively new non-invasive, real-time, contrast-free optical imaging technology, which allows for the real-time quantitative assessment of physiological properties, including tissue oxygenation (StO2). This study evaluates the accuracy of multispectral SSOP in quantifying bowel ischaemia in a preclinical experimental model. METHODS: In six pigs, an ischaemic bowel segment was created by dividing the arcade branches. Five regions of interest (ROIs) were identified on the bowel loop, as follows: ROI 1: central ischaemic; ROI 2: left marginal; ROI 3: left vascularised; ROI 4: right marginal; and ROI 5: right vascularised. The Trident imaging system, specifically developed for real-time tissue oxygenation imaging using SSOP, was used to image before (T0) and after ischaemia induction. Capillary and systemic lactates were measured at each time point (T0, T15, T30, T45, T60), as well as StO2 values acquired by means of SSOP (SSOP-StO2). RESULTS: The mean value of SSOP-StO2 in ROI 1 was 30.08 ± 6.963 and was significantly lower when compared to marginal ROIs (ROI 2 + ROI 4: 45.67 ± 10.02 p = < 0.0001), and to vascularised ROIs (ROI 3 + ROI 5: 48.08 ± 7.083 p = < 0.0001). SSOP-StO2 was significantly correlated with normalised lactates r = - 0.5892 p < 0.0001 and with histology r =- 0.6251 p = 0.0002. CONCLUSION: Multispectral SSOP allows for a contrast-free accurate assessment of small bowel perfusion identifying physiological tissue oxygenation as confirmed with perfusion biomarkers.


Subject(s)
Intestine, Small , Lactic Acid , Swine , Animals , Intestine, Small/diagnostic imaging , Optical Imaging/methods , Ischemia/diagnostic imaging
3.
Cancers (Basel) ; 13(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885189

ABSTRACT

Anastomotic leakage (AL) is a serious complication occurring after esophagectomy. The current knowledge suggests that inadequate intraoperative perfusion in the anastomotic site contributes to an increase in the AL rate. Presently, clinical estimation undertaken by surgeons is not accurate and new technology is necessary to improve the intraoperative assessment of tissue oxygenation. In the present study, we demonstrate the application of a novel optical technology, namely Single Snapshot imaging of Optical Properties (SSOP), used to quantify StO2% in an open surgery experimental gastric conduit (GC) model. After the creation of a gastric conduit, local StO2% was measured with a preclinical SSOP system for 60 min in the antrum (ROI-A), corpus (ROI-C), and fundus (ROI-F). The removed region (ROI-R) acted as ischemic control. ROI-R had statistically significant lower StO2% when compared to all other ROIs at T15, T30, T45, and T60 (p < 0.0001). Local capillary lactates (LCLs) and StO2% correlation was statistically significant (R = -0.8439, 95% CI -0.9367 to -0.6407, p < 0.0001). Finally, SSOP could discriminate resected from perfused regions and ROI-A from ROI-F (the future anastomotic site). In conclusion, SSOP could well be a suitable technology to assess intraoperative perfusion of GC, providing consistent StO2% quantification and ROIs discrimination.

SELECTION OF CITATIONS
SEARCH DETAIL
...