Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Curr Opin HIV AIDS ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38686856

ABSTRACT

PURPOSE OF REVIEW: Advancements in antiretroviral therapy (ART) have positively impacted the life expectancy and possibility of living a normal life for people with HIV-1. However, lifelong daily medication is necessary to prevent disease progression. To this end, immunotherapeutic strategies are being tested with the aim of developing a functional cure in which the immune system effectively controls HIV-1 in the absence of ART. RECENT FINDINGS: The most promising advances in achieving sustained HIV-1 remission or cure include broadly neutralizing antibodies (bNAbs) that are administered alone or in combination with other agents. Newer and more innovative approaches redirecting T cells or natural killer cells to kill HIV-1 infected cells have also shown promising results. Finally, multiple ongoing trials focus on combining bNAbs with other immune-directed therapies to enhance both innate and adaptive immunity. SUMMARY: While immunotherapies as an alternative to conventional ART have generally proven to be well tolerated, these therapeutic approaches have largely been unsuccessful in inducing ART-free control of HIV-1. However, promising results from recent trials involving bNAbs that have reported durable HIV-1 control among a subset of participants, provide reason for cautious optimism that we with further optimization of these treatment strategies may be able to achieve functional cure for HIV-1.

2.
J Infect Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687181

ABSTRACT

BACKGROUND: Within a year of the SARS-CoV-2 pandemic, vaccines inducing a robust humoral and cellular immune response were implemented worldwide. However, emergence of novel variants and waning vaccine induced immunity led to implementation of additional vaccine boosters. METHODS: This prospective study evaluated the temporal profile of cellular and serological responses in a cohort of 639 SARS-CoV-2 vaccinated participants, of whom a large proportion experienced a SARS-CoV-2 infection. All participants were infection naïve at the time of their first vaccine dose. Proportions of SARS-CoV-2 Spike-specific T cells were determined after each vaccine dose using the Activation Induced Markers (AIM) assay, while levels of circulating SARS-CoV-2 antibodies were determined by the Meso Scale serology assay. RESULTS: We found a significant increase in SARS-CoV-2 Spike-specific CD4+ and CD8+ T cell responses following the third dose of a SARS-CoV-2 mRNA vaccine as well as enhanced CD8+ T cell responses after the fourth dose. Further, increased age was associated with a poorer response. Finally, we observed that SARS-CoV-2 infection boosts both the cellular and humoral immune response, relative to vaccine-induced immunity alone. CONCLUSION: Our findings highlight the boosting effect on T cell immunity of repeated vaccine administration. The combination of multiple vaccine doses and SARS-CoV-2 infections maintains population T cell immunity although with reduced levels in the elderly.

3.
Scand J Med Sci Sports ; 34(1): e14362, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37002854

ABSTRACT

INTRODUCTION: Male elite cyclists (average VO2 -max: 71 mL/min/kg, n = 18) completed 7 weeks of high-intensity interval training (HIT) (3×/week; 4-min and 30-s intervals) during the competitive part of the season. The influence of a maintained or lowered total training volume combined with HIT was evaluated in a two-group design. Weekly moderate-intensity training was lowered by ~33% (~5 h) (LOW, n = 8) or maintained at normal volume (NOR, n = 10). Endurance performance and fatigue resistance were evaluated via 400 kcal time-trials (~20 min) commenced either with or without prior completion of a 120-min preload (including repeated 20-s sprints to simulate physiologic demands during road races). RESULTS: Time-trial performance without preload was improved after the intervention (p = 0.006) with a 3% increase in LOW (p = 0.04) and a 2% increase in NOR (p = 0.07). Preloaded time-trial was not significantly improved (p = 0.19). In the preload, average power during repeated sprinting increased by 6% in LOW (p < 0.01) and fatigue resistance in sprinting (start vs end of preload) was improved (p < 0.05) in both groups. Blood lactate during the preload was lowered (p < 0.001) solely in NOR. Measures of oxidative enzyme activity remained unchanged, whereas the glycolytic enzyme PFK increased by 22% for LOW (p = 0.02). CONCLUSION: The present study demonstrates that elite cyclists can benefit from intensified training during the competitive season both with maintained and lowered training volume at moderate intensity. In addition to benchmarking the effects of such training in ecological elite settings, the results also indicate how some performance and physiological parameters may interact with training volume.


Subject(s)
Bicycling , Physical Endurance , Humans , Male , Physical Endurance/physiology , Bicycling/physiology , Oxygen Consumption/physiology
4.
Clin Exp Rheumatol ; 42(1): 157-165, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37877429

ABSTRACT

OBJECTIVES: To investigate the effect of COVID-19 mRNA revaccination (two doses) on the antibody response in patients with rheumatic diseases (RD) who were initial vaccine non-responders. Further, to examine if B-cell levels or T-cell responses before revaccination predicted seroconversion. METHODS: From a RD cohort vaccinated with the standard two-dose COVID-19 vaccinations, we enrolled cases without detectable antibody responses (n=17) and controls with detectable antibody response (n=29). Blood donors (n=32) were included as additional controls. Samples were collected before and six weeks after completed revaccination. Total antibodies and specific IgG, IgA, and IgM against SARS-CoV-2 spike protein, SARS-CoV-2 neutralising antibodies, and SARS-CoV-2 reacting CD4+ and CD8+ T-cells were measured before and after revaccination. B-cells (CD19+CD45+) were quantified before revaccination. RESULTS: Forty-seven percent of cases had detectable neutralising antibodies after revaccination. However, antibody levels were significantly lower than in controls and blood donors. Revaccination induced an antibody class switch in cases with a decrease in IgM and increase in IgG. No significant difference was observed in T-cell responses before and after revaccination between the three groups. Only 29% of cases had measurable B-cells compared to 100% of controls and blood donors. Fifty percent of revaccinated cases who seroconverted had measurable B-cells before revaccination. CONCLUSIONS: Forty-seven percent of initial non-responders seroconverted after two-dose revaccination but still had lower levels of SARS-CoV-2 antibodies compared with controls and blood donors. RD patients without a detectable serological response after the initial COVID-19 mRNA vaccine had a T-cell response similar to immunocompetent controls and blood donors.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Lupus Erythematosus, Systemic , Rheumatic Diseases , Spike Glycoprotein, Coronavirus , Humans , COVID-19 Vaccines , Immunization, Secondary , Seroconversion , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin G , Immunoglobulin M
5.
STAR Protoc ; 5(1): 102777, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38133956

ABSTRACT

Many immunological treatment strategies for reducing the HIV-1 reservoir and enhancing adaptive immunity aim at activating the human plasmacytoid dendritic cells (pDCs). Here, we present a protocol for pDC enrichment, single-cell analysis, and development of a pDC transcriptomic database from healthy individuals and people with HIV-1 before and after Toll-like receptor 9 agonist treatment. For complete details on the use and execution of this protocol, please refer to Cham et al.1.


Subject(s)
HIV-1 , Humans , HIV-1/genetics , Interferon-alpha , Adaptive Immunity , Gene Expression Profiling , Dendritic Cells
6.
BMC Immunol ; 24(1): 45, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37974069

ABSTRACT

BACKGROUND: SARS-CoV-2 remains a world-wide health issue. SARS-CoV-2-specific immunity is induced upon both infection and vaccination. However, defining the long-term immune trajectory, especially after infection, is limited. In this study, we aimed to further the understanding of long-term SARS-CoV-2-specific immune response after infection. RESULTS: We conducted a longitudinal cohort study among 93 SARS-CoV-2 recovered individuals. Immune responses were continuously monitored for up to 20 months after infection. The humoral responses were quantified by Spike- and Nucleocapsid-specific IgG levels. T cell responses to Spike- and non-Spike epitopes were examined using both intercellular cytokine staining (ICS) assay and Activation-Induced marker (AIM) assay with quantification of antigen-specific IFNγ production. During the 20 months follow-up period, Nucleocapsid-specific antibody levels and non-Spike-specific CD4 + and CD8 + T cell frequencies decreased in the blood. However, a majority of participants maintained a durable immune responses 20 months after infection: 59% of the participants were seropositive for Nucleocapsid-specific IgG, and more than 70% had persisting non-Spike-specific T cells. The Spike-specific response initially decreased but as participants were vaccinated against COVID-19, Spike-specific IgG levels and T cell frequencies were boosted reaching similar or higher levels compared to 1 month post-infection. The trajectory of infection-induced SARS-CoV-2-specific immunity decreases, but for the majority of participants it persists beyond 20 months. The T cell response displays a greater durability. Vaccination boosts Spike-specific immune responses to similar or higher levels as seen after primary infection. CONCLUSIONS: For most participants, the response persists 20 months after infection, and the cellular response appears to be more long-lived compared to the circulating antibody levels. Vaccination boosts the S-specific response but does not affect the non-S-specific response. Together, these findings support the understanding of immune contraction, and with studies showing the immune levels required for protection, adds to the knowledge of durability of protection against future SARS-CoV-2.


Subject(s)
COVID-19 , Humans , Longitudinal Studies , SARS-CoV-2 , Immunity, Cellular , Immunoglobulin G , Antibodies, Viral , Immunity, Humoral , Vaccination
7.
Expert Rev Anti Infect Ther ; 21(11): 1227-1243, 2023.
Article in English | MEDLINE | ID: mdl-37856845

ABSTRACT

INTRODUCTION: The main barrier to finding a cure against HIV is the latent HIV reservoir, which persists in people living with HIV (PLWH) despite antiretroviral treatment (ART). Here, we discuss recent findings from interventional studies using mono- and combination therapies aimed at enhancing immune-mediated killing of the virus with or without activating HIV from latency. AREAS COVERED: We discuss latency reversal agents (LRAs), broadly neutralizing antibodies, immunomodulatory therapies, and studies aimed at inducing apoptosis. EXPERT OPINION: The landscape of clinical trials for HIV cure and remission has evolved considerably over the past 10 years. Several novel interventions such as immune checkpoint inhibitors, therapeutic vaccines, and broadly neutralizing antibodies have been tested either alone or in combination with LRAs but studies have so far not shown a meaningful impact on the frequency of latently infected cells. Immunomodulatory therapies could work differently in the setting of antigen expression, that is, during active viremia, and timing of interventions could therefore, be key to future therapeutic success. Lessons learned from clinical trials aimed at HIV cure indicate that while we are still far from reaching a complete eradication cure of HIV, clinical interventions capable of inducing enhanced control of HIV replication in the absence of ART might be a more feasible goal.


Subject(s)
HIV Infections , HIV-1 , Humans , Virus Latency , Broadly Neutralizing Antibodies/therapeutic use , Immunomodulation , CD4-Positive T-Lymphocytes
8.
J Virus Erad ; 9(3): 100347, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37767312

ABSTRACT

Immunomodulating agents are substances that modify the host immune responses in diseases such as infections, autoimmune conditions and cancers. Immunomodulators can be divided into two main groups: 1) immunostimulators that activate the immune system such as cytokines, toll-like receptor agonists and immune checkpoint blockers; and 2) immunosuppressors that dampen an overactive immune system such as corticosteroids and cytokine-blocking antibodies. In this review, we have focussed on the two primarily T and natural killer (NK) cell homeostatic cytokines: interleukin-7 (IL-7) and -15 (IL-15). These cytokines are immunostimulators which act on immune cells independently of the presence or absence of antigen. In vivo studies have shown that IL-7 administration enhances proliferation of circulating T cells whereas IL-15 agonists enhance the proliferation and function of NK and CD8+ T cells. Both IL-7 and IL-15 therapies have been tested as single interventions in HIV-1 cure-related clinical trials. In this review, we explore whether IL-7 and IL-15 could be part of the therapeutic approaches towards HIV-1 remission.

9.
iScience ; 26(9): 107628, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37664600

ABSTRACT

Human plasmacytoid dendritic cells (pDCs) play a central role in initiating and activating host immune responses during infection. To understand how the transcriptome of pDCs is impacted by HIV-1 infection and exogenous stimulation, we isolated pDCs from healthy controls, people with HIV-1 (PWH) before and during toll-like receptor 9 (TLR9) agonist treatment and performed single-cell (sc)-RNA sequencing. Our cluster analysis revealed four pDC clusters: pDC1, pDC2, cytotoxic-like pDC and an exhausted pDC cluster. The inducible cytotoxic-like pDC cluster is characterized by high expression of both antiviral and cytotoxic genes. Further analyses confirmed that cytotoxic-like pDCs are distinct from NK and T cells. Cell-cell communication analysis also demonstrated that cytotoxic-like pDCs exhibit similar incoming and outgoing cellular communicating signals as other pDCs. Thus, our study presents a detailed transcriptomic atlas of pDCs and provides new perspectives on the mechanisms of regulation and function of cytotoxic-like pDCs.

10.
iScience ; 26(9): 107621, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37682631

ABSTRACT

SARS-CoV-2 Omicron quickly spread globally, also in regions with high vaccination coverage, emphasizing the importance of exploring the immunological requirements for protection against Omicron breakthrough infection. The test-negative matched case-control study (N = 964) characterized Omicron breakthrough infections in triple-vaccinated individuals from the ENFORCE cohort. Within 60 days before a PCR test spike-specific IgG levels were significantly lower in cases compared to controls (GMR [95% CI] for BA.2: 0.83 [0.73-0.95], p = 0.006). Multivariable logistic regression showed significant associations between high antibody levels and lower odds of infection (aOR [95% CI] for BA.2 spike-specific IgG: 0.65 [0.48-0.88], p = 0.006 and BA.2 ACE2-blocking antibodies: 0.46 [0.30-0.69], p = 0.0002). A sex-stratified analysis showed more pronounced associations for females than males. High levels of vaccine-induced antibodies provide partial protection against Omicron breakthrough infections. This is important knowledge to further characterize a threshold for protection against new variants and to estimate the necessity and timing of booster vaccination.

11.
Nat Med ; 29(10): 2547-2558, 2023 10.
Article in English | MEDLINE | ID: mdl-37696935

ABSTRACT

Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756 .


Subject(s)
HIV Infections , HIV-1 , Toll-Like Receptor 9 , Female , Humans , Male , Adjuvants, Immunologic , Antibodies, Neutralizing , Broadly Neutralizing Antibodies/therapeutic use , HIV Antibodies/therapeutic use , Toll-Like Receptor 9/antagonists & inhibitors , Toll-Like Receptor 9/immunology
12.
EBioMedicine ; 96: 104785, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37672868

ABSTRACT

BACKGROUND: In individuals with malignancy or HIV-1 infection, antigen-specific cytotoxic T lymphocytes (CTLs) often display an exhausted phenotype with impaired capacity to eliminate the disease. Existing cell-based immunotherapy strategies are often limited by the requirement for adoptive transfer of CTLs. We have developed an immunotherapy technology in which potent CTL responses are generated in vivo by vaccination and redirected to eliminate target cells using a bispecific Redirector of Vaccine-induced Effector Responses (RoVER). METHODS: Following Yellow fever (YF) 17D vaccination of 51 healthy volunteers (NCT04083430), single-epitope YF-specific CTL responses were quantified by tetramer staining and multi-parameter flow cytometry. RoVER-mediated redirection of YF-specific CTLs to kill antigen-expressing Raji-Env cells, autologous CD19+ B cells or CD4+ T cells infected in vitro with a full-length HIV-1-eGFP was assessed in cell killing assays. Moreover, secreted IFN-γ, granzyme B, and TNF-α were analyzed by mesoscale multiplex assays. FINDINGS: YF-17D vaccination induced strong epitope-specific CTL responses in the study participants. In cell killing assays, RoVER-mediated redirection of YF-specific CTLs to autologous CD19+ B cells or HIV-1-infected CD4+ cells resulted in 58% and 53% killing at effector to target ratio 1:1, respectively. INTERPRETATION: We have developed an immunotherapy technology in which epitope-specific CTLs induced by vaccination can be redirected to kill antigen-expressing target cells by RoVER linking. The RoVER technology is highly specific and can be adapted to recognize various cell surface antigens. Importantly, this technology obviates the need for adoptive transfer of CTLs. FUNDING: This work was funded by the Novo Nordisk Foundation (Hallas Møller NNF10OC0054577).

13.
Front Immunol ; 14: 1253395, 2023.
Article in English | MEDLINE | ID: mdl-37671164

ABSTRACT

Chimeric Antigen Receptor (CAR) T cell therapies are tremendously successful in hematological malignancies and show great promise as treatment and curative strategy for HIV. A major determinant for effective CAR T cell therapy is the persistence of CAR T cells. Particularly, antigen density and target cell abundance are crucial for the engagement, engraftment, and persistence of CAR T cells. The success of HIV-specific CAR T cells is challenged by limited antigen due to low cell surface expression of viral proteins and the scarcity of chronically infected cells during antiretroviral therapy. Several strategies have been explored to increase the efficacy of CAR T cells by enhancing expansion and persistence of the engineered cells. This review highlights the challenges of designing CAR T cells against HIV and other chronic viral infections. We also discuss potential strategies to enhance CAR T cell expansion and persistence in the setting of low antigen exposure.


Subject(s)
HIV Infections , Humans , Cell Proliferation , Cell Cycle , Cell Membrane , T-Lymphocytes
14.
Obes Sci Pract ; 9(4): 355-363, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37546282

ABSTRACT

Purpose: Obesity may alter the severity of infection with Coronavirus disease 2019 (COVID-19). Age may impact the association between body weight and severity of COVID-19 in patients with obesity. The aim of the study was to examine the association between obesity and severity of infection in a Danish cohort hospitalized with COVID-19 in the initial wave of the pandemic. Patients and methods: Based on data from the nationwide, clinical database: COVID-DK, risks of intensive care unit (ICU) admission, invasive mechanical ventilation (IMV), and mortality were compared among patients with and without obesity. Interaction with age was examined and we used Inverse Probability of Treatment Weighting regression for confounder adjustment. Results: Among 524 patients, 142 (27%) were admitted to the ICU, 112 (21%) required IMV, and 109 (21%) died. Compared to COVID-19 patients without obesity, patients with obesity displayed a non-significant increased risk of ICU admission (Relative Risk [RR] 1.19, 95% Confidence Interval [CI] 0.88; 1.60), IMV (RR 1.23, CI 0.86; 1.75) and mortality (RR 1.21, CI 0.84; 1.75). COVID-19 patients with obesity, <60 years had highly increased risk of ICU admission (RR 1.92, CI 1.14; 3.24) and IMV (RR 1.95, CI 1.09; 3.49). Conclusions: In hospitalized COVID-19 patients, obesity conferred an approximately 20% increased risk for ICU admission, IMV, and death, although these relationships did not reach statistical significance. COVID-19 patients with obesity and <60 years had an almost doubled risk of ICU admission and IMV.

15.
Clin Infect Dis ; 77(11): 1511-1520, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37392436

ABSTRACT

BACKGROUND: Continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outpaces monovalent vaccine cross-protection to new viral variants. Consequently, bivalent coronavirus disease 2019 (COVID-19) vaccines including Omicron antigens were developed. The contrasting immunogenicity of the bivalent vaccines and the impact of prior antigenic exposure on new immune imprinting remains to be clarified. METHODS: In the large prospective ENFORCE cohort, we quantified spike-specific antibodies to 5 Omicron variants (BA.1 to BA.5) before and after BA.1 or BA.4/5 bivalent booster vaccination to compare Omicron variant-specific antibody inductions. We evaluated the impact of previous infection and characterized the dominant antibody responses. RESULTS: Prior to the bivalent fourth vaccine, all participants (N = 1697) had high levels of Omicron-specific antibodies. Antibody levels were significantly higher in individuals with a previous polymerase chain reaction positive (PCR+) infection, particularly for BA.2-specific antibodies (geometric mean ratio [GMR] 6.79, 95% confidence interval [CI] 6.05-7.62). Antibody levels were further significantly boosted in all individuals by receiving either of the bivalent vaccines, but greater fold inductions to all Omicron variants were observed in individuals with no prior infection. The BA.1 bivalent vaccine generated a dominant response toward BA.1 (adjusted GMR 1.31, 95% CI 1.09-1.57) and BA.3 (1.32, 1.09-1.59) antigens in individuals with no prior infection, whereas the BA.4/5 bivalent vaccine generated a dominant response toward BA.2 (0.87, 0.76-0.98), BA.4 (0.85, 0.75-0.97), and BA.5 (0.87, 0.76-0.99) antigens in individuals with a prior infection. CONCLUSIONS: Vaccination and previous infection leave a clear serological imprint that is focused on the variant-specific antigen. Importantly, both bivalent vaccines induce high levels of Omicron variant-specific antibodies, suggesting broad cross-protection of Omicron variants.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Cohort Studies , Prospective Studies , Vaccination , COVID-19 Vaccines , Vaccines, Combined , Antibodies, Viral , Antibodies, Neutralizing
16.
Open Forum Infect Dis ; 10(6): ofad248, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37351453

ABSTRACT

Background: Side effects to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are a key concern contributing to vaccine hesitancy, but more individuals may be encouraged if SARS-CoV-2 vaccines were known to lead to a stronger immune response. Methods: Included were adult participants from the Danish National Cohort Study of Effectiveness and Safety of SARS-CoV-2 Vaccines (ENFORCE) who completed a questionnaire to assess systemic reactions following SARS-CoV-2 vaccination (BTN162b2, mRNA-1273, ChAdOx1) and had SARS-CoV-2 spike immunoglobulin G (IgG) levels measured at baseline and post-vaccine. A symptom score was developed to measure severity of systemic adverse reactions (+1 for each moderate, +2 for each severe). Post-vaccination SARS-CoV-2 spike IgG levels were compared between participants with different scores using multivariable linear regression. Results: A total of 6528 participants were included (56.3% females; median age [interquartile range], 64 [54-75] years). After the first vaccination, no association was found between symptom score and post-vaccine dose spike IgG level (P = .575). Following the second vaccination, significantly higher spike IgG levels were observed according to higher symptom scores (P < .001); adjusted geometric mean ratios were 1.16 (95% CI, 1.04-1.30), 1.24 (95% CI, 1.09-1.41), 1.25 (95% CI, 1.06-1.46), and 1.21 (95% CI, 1.08-1.35), for scores of 2, 3, 4, and ≥5, respectively, compared with a score of 0. After adjustment for pre-vaccine dose spike IgG, this association was attenuated. Conclusions: An association was found between more severe adverse reactions and stronger antibody response after the second vaccination but not the first, likely attributed to higher levels of preexisting immunity gained from response to first vaccination. Regardless of side effects, most people experienced an effective immune response following vaccination.

17.
Curr Opin HIV AIDS ; 18(4): 157-163, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37144579

ABSTRACT

PURPOSE OF REVIEW: In recent years, clinical trials have explored broadly neutralizing antibodies (bNAbs) as treatment and cure of HIV. Here, we summarize the current knowledge, review the latest clinical studies, and reflect on the potential role of bNAbs in future applications in HIV treatment and cure strategies. RECENT FINDINGS: In most individuals who switch from standard antiretroviral therapy to bNAb treatment, combinations of at least two bNAbs effectively suppress viremia. However, sensitivity of archived proviruses to bNAb neutralization and maintaining adequate bNAb plasma levels are key determinants of the therapeutic effect. Combinations of bNAbs with injectable small-molecule antiretrovirals are being developed as long-acting treatment regimens that may require as little as two annual administrations to maintain virological suppression. Further, interventions that combine bNAbs with immune modulators or therapeutic vaccines are under investigation as HIV curative strategies. Interestingly, administration of bNAbs during the early or viremic stage of infection appears to enhance host immune responses against HIV. SUMMARY: While accurately predicting archived resistant mutations has been a significant challenge for bNAb-based treatments, combinations of potent bNAbs against nonoverlapping epitopes may help overcome this issue. As a result, multiple long-acting HIV treatment and cure strategies involving bNAbs are now being investigated.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , Broadly Neutralizing Antibodies , HIV Antibodies , Antibodies, Neutralizing/therapeutic use , HIV-1/genetics , Anti-Retroviral Agents , Viremia/drug therapy
18.
Commun Med (Lond) ; 3(1): 58, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095240

ABSTRACT

BACKGROUND: Older age and chronic disease are important risk factors for developing severe COVID-19. At population level, vaccine-induced immunity substantially reduces the risk of severe COVID-19 disease and hospitalization. However, the relative impact of humoral and cellular immunity on protection from breakthrough infection and severe disease is not fully understood. METHODS: In a study cohort of 655 primarily older study participants (median of 63 years (IQR: 51-72)), we determined serum levels of Spike IgG antibodies using a Multiantigen Serological Assay and quantified the frequency of SARS-CoV-2 Spike-specific CD4 + and CD8 + T cells using activation induced marker assay. This enabled characterization of suboptimal vaccine-induced cellular immunity. The risk factors of being a cellular hypo responder were assessed using logistic regression. Further follow-up of study participants allowed for an evaluation of the impact of T cell immunity on breakthrough infections. RESULTS: We show reduced serological immunity and frequency of CD4 + Spike-specific T cells in the oldest age group (≥75 years) and higher Charlson Comorbidity Index (CCI) categories. Male sex, age group ≥75 years, and CCI > 0 is associated with an increased likelihood of being a cellular hypo-responder while vaccine type is a significant risk factor. Assessing breakthrough infections, no protective effect of T cell immunity is identified. CONCLUSIONS: SARS-CoV-2 Spike-specific immune responses in both the cellular and serological compartment of the adaptive immune system increase with each vaccine dose and are progressively lower with older age and higher prevalence of comorbidities. The findings contribute to the understanding of the vaccine response in individuals with increased risk of severe COVID-19 disease and hospitalization.


Vaccination has proven very effective in protecting against severe disease and hospitalization of people with COVID-19, the disease caused by SARS-CoV-2. It is still unclear, however, how the different components of the immune system respond to SARS-CoV-2 vaccination and protect from infection and severe disease. Two of the most predominant components of the immune system are specialized proteins and cells. The proteins circulate in the blood and help clear the virus by binding to it, while the cells either kill the virus or help other cells to produce more antibodies. Here, we examined the response of these two components to the SARS-CoV-2 vaccine in 655 Danish citizens. The response of both components was lower in people over 75 years old and with other diseases. These findings help in understanding the immune responses following SARS-CoV-2 vaccination in people at increased risk of severe symptoms of COVID-19.

19.
Infect Dis (Lond) ; 55(5): 351-360, 2023 05.
Article in English | MEDLINE | ID: mdl-36905638

ABSTRACT

BACKGROUND: The combined effectiveness of remdesivir and dexamethasone in subgroups of hospitalised patients with COVID-19 is poorly investigated. METHODS: In this nationwide retrospective cohort study, we included 3826 patients with COVID-19 hospitalised between February 2020 and April 2021. The primary outcomes were use of invasive mechanical ventilation and 30-day mortality, comparing a cohort treated with remdesivir and dexamethasone with a previous cohort treated without remdesivir and dexamethasone. We used inverse probability of treatment weighting logistic regression to assess associations with progression to invasive mechanical ventilation and 30-day mortality between the two cohorts. The analyses were conducted overall and by subgroups based on patient characteristics. RESULTS: Odds ratio for progression to invasive mechanical ventilation and 30-day mortality in individuals treated with remdesivir and dexamethasone compared to treatment with standard of care alone was 0.46 (95% confidence interval, 0.37-0.57) and 0.47 (95% confidence interval, 0.39-0.56), respectively. The reduced risk of mortality was observed in elderly patients, overweight patients and in patients requiring supplemental oxygen at admission, regardless of sex, comorbidities and symptom duration. CONCLUSIONS: Patients treated with remdesivir and dexamethasone had significantly improved outcomes compared to patients treated with standard of care alone. These effects were observed in most patient subgroups.


Subject(s)
COVID-19 , Humans , Aged , SARS-CoV-2 , Retrospective Studies , COVID-19 Drug Treatment , Antiviral Agents/therapeutic use , Dexamethasone/therapeutic use
20.
EMBO Mol Med ; 15(4): e16422, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36799046

ABSTRACT

The complement system which is part of the innate immune response against invading pathogens represents a powerful mechanism for killing of infected cells. Utilizing direct complement recruitment for complement-mediated elimination of HIV-1-infected cells is underexplored. We developed a novel therapeutic modality to direct complement activity to the surface of HIV-1-infected cells. This bispecific complement engager (BiCE) is comprised of a nanobody recruiting the complement-initiating protein C1q, and single-chain variable fragments of broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope (Env) protein. Here, we show that two anti-HIV BiCEs targeting the V3 loop and the CD4 binding site, respectively, increase C3 deposition and mediate complement-dependent cytotoxicity (CDC) of HIV-1 Env-expressing Raji cells. Furthermore, anti-HIV BiCEs trigger complement activation on primary CD4 T cells infected with laboratory-adapted HIV-1 strain and facilitates elimination of HIV-1-infected cells over time. In summary, we present a novel approach to direct complement deposition to the surface of HIV-1-infected cells leading to complement-mediated killing of these cells.


Subject(s)
HIV Infections , HIV-1 , Humans , Antibodies, Neutralizing , Complement Activation , CD4-Positive T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...