Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Physiol Plant ; 176(5): e14520, 2024.
Article in English | MEDLINE | ID: mdl-39351613

ABSTRACT

Adhesion and consequent adoption of a sessile habit is a common feature of many green algae and was likely a key mechanism in terrestrialization by an ancient zygnematophyte (i.e., the Zygnematophyceae, the group of algae ancestral to land plants). Penium margaritaceum is a unicellular zygnematophyte that exhibits a multistep adhesion mechanism, which leads to the establishment of the sessile habit. Based on microscopic and immunological data, a dense aggregate of fibrils containing arabinogalactan-protein (AGP)-like components covers the cell surface and is responsible for initial adhesion. The AGP-like fibrils are 20 µm in diameter and possess chemical profiles similar to land plant AGPs. The fibrils attach to the inner cell wall layers and are very likely connected to the plasma membrane as glycophosphatidylinositol (GPI) lipid-anchored proteins, as they are susceptible to phospholipase C treatment. The presence of GPI-anchored AGPs in Penium is further supported by the identification of putative Penium homologs of land plant AGP genes responsible for GPI-anchor synthesis. After adhesion, cells secrete a complex heteropolysaccharide-containing extracellular polymeric substance (EPS) that facilitates gliding motility and the formation of cell aggregates. Fucoidan-like polymers, major components of brown algal CWs, are a major constituent of both the EPS and the adhesive layer of the CW and their role in the adhesion process is still to be examined.


Subject(s)
Cell Adhesion , Extracellular Matrix , Mucoproteins , Plant Proteins , Extracellular Matrix/metabolism , Mucoproteins/metabolism , Mucoproteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Cell Adhesion/physiology , Cell Wall/metabolism , Chlorophyta/metabolism , Chlorophyta/genetics , Chlorophyta/physiology
2.
Evol Appl ; 17(9): e70008, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39257569

ABSTRACT

Anthropogenic impact has transitioned from threatening already rare species to causing significant declines in once numerous organisms. Long-tailed duck (Clangula hyemalis) and velvet scoter (Melanitta fusca) were once important quarry sea duck species in NW Europe, but recent declines resulted in their reclassification as vulnerable on the IUCN Red List. We sequenced and assembled genomes for both species and resequenced 15 individuals of each. Using analyses based on site frequency spectra and sequential Markovian coalescence, we found C. hyemalis to show more historical demographic stability, whereas M. fusca was affected particularly by the Last (Weichselian) Glaciation. This likely reflects C. hyemalis breeding continuously across the Arctic, with cycles of glaciation primarily shifting breeding areas south or north without major population declines, whereas the more restricted southern range of M. fusca would lead to significant range contraction during glaciations. Both species showed evidence of declines over the past thousands of years, potentially reflecting anthropogenic pressures with the recent decline indicating an accelerated process. Analysis of runs of homozygosity (ROH) showed low but nontrivial inbreeding, with F ROH from 0.012 to 0.063 in C. hyemalis and ranging from 0 to 0.047 in M. fusca. Lengths of ROH suggested that this was due to ongoing background inbreeding rather than recent declines. Overall, despite demographically important declines, this has not yet led to strong inbreeding and genetic erosion, and the most pressing conservation concern may be the risk of density-dependent (Allee) effects. We recommend monitoring of inbreeding using ROH analysis as a cost-efficient method to track future developments to support effective conservation of these species.

3.
Plant Physiol ; 194(1): 258-273, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37706590

ABSTRACT

The Cuscuta genus comprises obligate parasitic plants that have an unusually wide host range. Whether Cuscuta uses different infection strategies for different hosts or whether the infection strategy is mechanistically and enzymatically conserved remains unknown. To address this, we investigated molecular events during the interaction between field dodder (Cuscuta campestris) and two host species of the Solanum genus that are known to react differently to parasitic infection. We found that host gene induction, particularly of cell wall fortifying genes, coincided with a differential induction of genes for cell wall degradation in the parasite in the cultivated tomato (Solanum lycopersicum) but not in a wild relative (Solanum pennellii). This indicates that the parasite can adjust its gene expression in response to its host. This idea was supported by the increased expression of C. campestris genes encoding an endo-ß-1,4-mannanase in response to exposure of the parasite to purified mono- and polysaccharides in a host-independent infection system. Our results suggest multiple key roles of the host cell wall in determining the outcome of an infection attempt.


Subject(s)
Cuscuta , Parasites , Solanum lycopersicum , Solanum , Animals , Cuscuta/genetics , Host-Parasite Interactions/genetics , Solanum lycopersicum/genetics , Solanum/genetics , Gene Expression
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34380735

ABSTRACT

Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes. Here, we show that a tomato fruit ripening-specific LATERAL ORGAN BOUNDRIES (LOB) TF, SlLOB1, up-regulates a suite of cell wall-associated genes during late maturation and ripening of locule and pericarp tissues. SlLOB1 repression in transgenic fruit impedes softening, while overexpression throughout the plant under the direction of the 35s promoter confers precocious induction of cell wall gene expression and premature softening. Transcript and protein levels of the wall-loosening protein EXPANSIN1 (EXP1) are strongly suppressed in SlLOB1 RNA interference lines, while EXP1 is induced in SlLOB1-overexpressing transgenic leaves and fruit. In contrast to the role of ethylene and previously characterized ripening TFs, which are comprehensive facilitators of ripening phenomena including softening, SlLOB1 participates in a regulatory subcircuit predominant to cell wall dynamics and softening.


Subject(s)
Cell Wall/physiology , Fruit/physiology , Gene Expression Regulation, Plant/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Carotenoids , Ethylenes/metabolism , Food Storage , Gene Silencing , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics
5.
Plant Cell ; 33(5): 1472-1491, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33638637

ABSTRACT

The plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, which represent the non-vascular stage of embryophyte evolution. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes. Phylogenetic analysis indicates that bona fide HCT function emerged in the progenitor of embryophytes. In vitro enzyme assays, moss phenolic pathway reconstitution in yeast and in planta gene inactivation coupled to targeted metabolic profiling, collectively indicate that P. patens HCT (PpHCT), similar to tracheophyte HCT orthologs, uses shikimate as a native acyl acceptor to produce a p-coumaroyl-5-O-shikimate intermediate. Phenotypic and metabolic analyses of loss-of-function mutants show that PpHCT is necessary for the production of caffeate derivatives, including previously reported caffeoyl-threonate esters, and for the formation of an intact cuticle. Deep conservation of HCT function in embryophytes is further suggested by the ability of HCT genes from P. patens and the liverwort Marchantia polymorpha to complement an Arabidopsis thaliana CRISPR/Cas9 hct mutant, and by the presence of phenolic esters of shikimate in representative species of the three bryophyte lineages.


Subject(s)
Acyltransferases/genetics , Acyltransferases/metabolism , Conserved Sequence , Embryophyta/enzymology , Evolution, Molecular , Acylation , Acyltransferases/deficiency , Biocatalysis , Bryophyta/enzymology , Embryophyta/genetics , Gene Expression Regulation, Enzymologic , Genes, Plant , Kinetics , Models, Biological , Phenols/metabolism , Phylogeny , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Shikimic Acid/chemistry , Shikimic Acid/metabolism
6.
J Cell Sci ; 133(19)2020 10 12.
Article in English | MEDLINE | ID: mdl-32895244

ABSTRACT

Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a ß-1,3 glucan, accumulates at later stages of cell plate development, presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, because it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, Penium margaritaceum Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition of callose deposition by endosidin 7 resulted in cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum The evolutionary implications of cytokinetic callose in this unicellular zygnematopycean alga is discussed in the context of the conquest of land by plants.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Charophyceae , Cytokinesis , Cell Wall , Glucans
7.
Front Plant Sci ; 11: 1032, 2020.
Article in English | MEDLINE | ID: mdl-32733522

ABSTRACT

Pectins represent one of the main components of the plant primary cell wall. These polymers have critical roles in cell expansion, cell-cell adhesion and response to biotic stress. We present a comprehensive screening of pectin architecture of the unicellular streptophyte, Penium margaritaceum. Penium possesses a distinct cell wall whose outer layer consists of a lattice of pectin-rich fibers and projections. In this study, cells were exposed to a variety of physical, chemical and enzymatic treatments that directly affect the cell wall, especially the pectin lattice. Correlative analyses of pectin lattice perturbation using field emission scanning electron microscopy, confocal laser scanning microscopy, and transmission electron microscopy demonstrate that pectin lattice microarchitecture is both highly sensitive and malleable.

8.
Plant Cell ; 32(10): 3188-3205, 2020 10.
Article in English | MEDLINE | ID: mdl-32753430

ABSTRACT

Cell fate maintenance is an integral part of plant cell differentiation and the production of functional cells, tissues, and organs. Fleshy fruit development is characterized by the accumulation of water and solutes in the enlarging cells of parenchymatous tissues. In tomato (Solanum lycopersicum), this process is associated with endoreduplication in mesocarp cells. The mechanisms that preserve this developmental program, once initiated, remain unknown. We show here that analysis of a previously identified tomato ethyl methanesulfonate-induced mutant that exhibits abnormal mesocarp cell differentiation could help elucidate determinants of fruit cell fate maintenance. We identified and validated the causal locus through mapping-by-sequencing and gene editing, respectively, and performed metabolic, cellular, and transcriptomic analyses of the mutant phenotype. The data indicate that disruption of the SlGBP1 gene, encoding GUANYLATE BINDING PROTEIN1, induces early termination of endoreduplication followed by late divisions of polyploid mesocarp cells, which consequently acquire the characteristics of young proliferative cells. This study reveals a crucial role of plant GBPs in the control of cell cycle genes, and thus, in cell fate maintenance. We propose that SlGBP1 acts as an inhibitor of cell division, a function conserved with the human hGBP-1 protein.


Subject(s)
Fruit/cytology , Fruit/growth & development , Plant Proteins/genetics , Solanum lycopersicum/cytology , CRISPR-Cas Systems , Cell Cycle/genetics , Cell Differentiation , Cell Size , Cell Wall/genetics , Cell Wall/metabolism , Endoreduplication , Fruit/genetics , Fruit/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Editing , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Mutation , Pectins/genetics , Pectins/metabolism , Phenotype , Plant Cells , Plant Proteins/metabolism , Plants, Genetically Modified , Ploidies
9.
Cell ; 181(5): 1097-1111.e12, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32442406

ABSTRACT

The evolutionary features and molecular innovations that enabled plants to first colonize land are not well understood. Here, insights are provided through our report of the genome sequence of the unicellular alga Penium margaritaceum, a member of the Zygnematophyceae, the sister lineage to land plants. The genome has a high proportion of repeat sequences that are associated with massive segmental gene duplications, likely facilitating neofunctionalization. Compared with representatives of earlier diverging algal lineages, P. margaritaceum has expanded repertoires of gene families, signaling networks, and adaptive responses that highlight the evolutionary trajectory toward terrestrialization. These encompass a broad range of physiological processes and protective cellular features, such as flavonoid compounds and large families of modifying enzymes involved in cell wall biosynthesis, assembly, and remodeling. Transcriptome profiling further elucidated adaptations, responses, and selective pressures associated with the semi-terrestrial ecosystems of P. margaritaceum, where a simple body plan would be an advantage.


Subject(s)
Desmidiales/genetics , Desmidiales/metabolism , Embryophyta/genetics , Biological Evolution , Cell Wall/genetics , Cell Wall/metabolism , Ecosystem , Evolution, Molecular , Phylogeny , Plants
10.
Curr Opin Plant Biol ; 55: 11-20, 2020 06.
Article in English | MEDLINE | ID: mdl-32203682

ABSTRACT

Cutin and suberin are hydrophobic lipid biopolyester components of the cell walls of specialized plant tissue and cell-types, where they facilitate adaptation to terrestrial habitats. Many steps in their biosynthetic pathways have been characterized, but the basis of their spatial deposition and precursor trafficking is not well understood. Members of the GDSL lipase/esterase family catalyze cutin polymerization, and candidate proteins have been proposed to mediate interactions between cutin or suberin and other wall components. Comparative genomic studies of charophyte algae and early diverging land plants, combined with knowledge of the biosynthesis, trafficking and assembly mechanisms, suggests an origin for the capacity to secrete waxes, as well as aliphatic and phenolic compounds before the first colonization of true terrestrial habitats.


Subject(s)
Embryophyta , Membrane Lipids , Cell Wall , Lipids
11.
Environ Int ; 137: 105582, 2020 04.
Article in English | MEDLINE | ID: mdl-32086081

ABSTRACT

Here we investigate if lead may be a contributing factor to the observed population decline in a Baltic colony of incubating eiders (Somateria mollissima). Body mass and blood samples were obtained from 50 incubating female eiders at the Baltic breeding colony on Christiansø during spring 2017 (n = 27) and 2018 (n = 23). All the females were sampled twice during early (day 4) and late (day 24) incubation. The full blood was analysed for lead to investigate if the concentrations exceeded toxic thresholds or changed over the incubation period due to remobilisation from bones and liver tissue. Body mass, hatch date and number of chicks were also analysed with respect to lead concentrations. The body mass (mean ± SD g) increased significantly in the order: day 24 in 2018 (1561 ± 154 g) < day 24 in 2017 (1618 ± 156 g) < day 4 in 2018 (2183 ± 140 g) < day 4 in 2017 (2359 ± 167 g) (all p < 0.001). The lead concentrations increased significantly in the opposite order i.e. day 4 in 2017 (41.7 ± 67.1 µg/L) < day 24 in 2017 (55.4 ± 66.8 µg/L) < day 4 in 2018 (177 ± 196 µg/L) < day 24 in 2018 (258 ± 243) (all p < 0.001). From day 4 to 24, the eider females had a 1.33-fold increase in blood lead concentrations in 2017 and a 1.46-fold increase in 2018. Three of the birds (13%) sampled in 2018 had lead concentrations that exceeded concentrations of clinical poisoning (500 µg/L) and eleven (48%) had concentrations that exceeded the threshold for subclinical poisoning (200 µg/L). In 2017, none of the birds exceeded the high toxic threshold of clinical poisoning while only one (4%) exceeded the lower threshold for subclinical poisoning. Three of the birds (6%) sampled in 2018 had lead concentrations that exceeded those of clinical poisoning while 12 birds (24%) resampled in both years exceeded the threshold for subclinical poisoning. In addition, lead concentrations and body mass on day 4 affected hatch date positively in 2018 (both p < 0.03) but not in 2017. These results show that bioavailable lead in bone and liver tissue pose a threat to the health of about 25% of the incubating eiders sampled. This is particularly critical because eiders are largely capital breeding which means that incubating eiders are in an energetically stressed state. The origin of lead in incubating eiders in the Christiansø colony is unknown and it remains an urgent priority to establish the source, prevalence and mechanism for uptake. The increase in lead from day 4 to day 24 is due to bone and liver remobilization; however, the additional lead source(s) on the breeding grounds needs to be identified. Continued investigations should determine the origin, uptake mechanisms and degree of exposure to lead for individual birds. Such research should include necropsies, x-ray, lead isotope and stable C and N isotope analyses to find the lead sources(s) in the course of the annual cycle and how it may affect the population dynamics of the Christiansø colony which reflects the ecology of the Baltic eiders being suitable for biomonitoring the overall flyway.


Subject(s)
Ducks , Lead , Water Pollutants , Animals , Aquatic Organisms , Birds , Female , Lead/blood , Population Dynamics , Seasons , Water Pollutants/blood
12.
J Exp Bot ; 71(11): 3323-3339, 2020 06 11.
Article in English | MEDLINE | ID: mdl-31974570

ABSTRACT

The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150-200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.


Subject(s)
Charophyceae , Chlorophyta , Cell Wall , Extracellular Matrix , Golgi Apparatus , Polysaccharides
13.
Plant Biotechnol J ; 18(1): 106-118, 2020 01.
Article in English | MEDLINE | ID: mdl-31131540

ABSTRACT

Tomato (Solanum lycopersicum) fruit ripening is regulated co-operatively by the action of ethylene and a hierarchy of transcription factors, including RIPENING INHIBITOR (RIN) and NON-RIPENING (NOR). Mutations in these two genes have been adopted commercially to delay ripening, and accompanying textural deterioration, as a means to prolong shelf life. However, these mutations also affect desirable traits associated with colour and nutritional value, although the extent of this trade-off has not been assessed in detail. Here, we evaluated changes in tomato fruit pericarp primary metabolite and carotenoid pigment profiles, as well as the dynamics of specific associated transcripts, in the rin and nor mutants during late development and postharvest storage, as well of those of the partially ripening delayed fruit ripening (dfd) tomato genotype. These profiles were compared with those of the wild-type tomato cultivars Ailsa Craig (AC) and M82. We also evaluated the metabolic composition of M82 fruit ripened on or off the vine over a similar period. In general, the dfd mutation resulted in prolonged firmness and maintenance of quality traits without compromising key metabolites (sucrose, glucose/fructose and glucose) and sectors of intermediary metabolism, including tricarboxylic acid cycle intermediates. Our analysis also provided insights into the regulation of carotenoid formation and highlighted the importance of the polyamine, putrescine, in extending fruit shelf life. Finally, the metabolic composition analysis of M82 fruit ripened on or off the vine provided insights into the import into fruit of compounds, such as sucrose, during ripening.


Subject(s)
Fruit/growth & development , Solanum lycopersicum/genetics , Ethylenes , Fruit/chemistry , Gene Expression Regulation, Plant , Mutation , Plant Proteins
14.
New Phytol ; 223(3): 1547-1559, 2019 08.
Article in English | MEDLINE | ID: mdl-30980530

ABSTRACT

The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.


Subject(s)
Acyltransferases/metabolism , Cell Wall/metabolism , Nicotiana/metabolism , Plant Epidermis/microbiology , Plant Leaves/microbiology , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Botrytis/physiology , Cell Wall/ultrastructure , Disease Resistance/immunology , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Phytophthora/physiology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Epidermis/metabolism , Plant Epidermis/ultrastructure , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plant Stomata/metabolism , Plant Stomata/microbiology , Plant Stomata/ultrastructure , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Transcriptome/genetics
15.
Proteomes ; 6(2)2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29561781

ABSTRACT

The secretome can be defined as the population of proteins that are secreted into the extracellular environment. Many proteins that are secreted by eukaryotes are N-glycosylated. However, there are striking differences in the diversity and conservation of N-glycosylation patterns between taxa. For example, the secretome and N-glycosylation structures differ between land plants and chlorophyte green algae, but it is not clear when this divergence took place during plant evolution. A potentially valuable system to study this issue is provided by the charophycean green algae (CGA), which is the immediate ancestors of land plants. In this study, we used lectin affinity chromatography (LAC) coupled with mass spectrometry to characterize the secretome including secreted N-glycoproteins of Penium margaritaceum, which is a member of the CGA. The identified secreted proteins and N-glycans were compared to those known from the chlorophyte green alga Chlamydomonas reinhardtii and the model land plant, Arabidopsis thaliana, to establish their evolutionary context. Our approach allowed the identification of cell wall proteins and proteins modified with N-glycans that are identical to those of embryophytes, which suggests that the P. margaritaceum secretome is more closely related to those of land plants than to those of chlorophytes. The results of this study support the hypothesis that many of the proteins associated with plant cell wall modification as well as other extracellular processes evolved prior to the colonization of terrestrial habitats.

16.
Biol Lett ; 13(6)2017 Jun.
Article in English | MEDLINE | ID: mdl-28615350

ABSTRACT

Long-distance migrants are particularly recognized for the distances covered on migration, yet little is known about the distances they cover during the rest of the year. GPS-tracks of 29 Montagu's harriers from breeding areas in France, The Netherlands and Denmark showed that harriers fly between 35 653 and 88 049 km yr-1, of which on average only 28.5% is on migration. Mean daily distances during migration were 296 km d-1 in autumn and 252 km d-1 in spring. Surprisingly, males' daily distances during breeding (217 km d-1) were close to those during migration, whereas breeding females moved significantly less (101 km d-1) than males. In terms of flight distance, the breeding season seemed nearly as demanding as migration periods for males. During the six winter months, both sexes moved less (114 and 128 km d-1 for females and males, respectively) than during migration. Harriers therefore covered shorter daily distances during winter which might allow birds to compensate for the more demanding phases of migration and breeding.


Subject(s)
Falconiformes , Animal Migration , Animals , Denmark , Female , France , Male , Netherlands
18.
Front Plant Sci ; 7: 1470, 2016.
Article in English | MEDLINE | ID: mdl-27777578

ABSTRACT

Charophytes are the group of green algae whose ancestral lineage gave rise to land plants in what resulted in a profoundly transformative event in the natural history of the planet. Extant charophytes exhibit many features that are similar to those found in land plants and their relatively simple phenotypes make them efficacious organisms for the study of many fundamental biological phenomena. Several taxa including Micrasterias, Penium, Chara, and Coleochaete are valuable model organisms for the study of cell biology, development, physiology and ecology of plants. New and rapidly expanding molecular studies are increasing the use of charophytes that in turn, will dramatically enhance our understanding of the evolution of plants and the adaptations that allowed for survival on land. The Frontiers in Plant Science series on "Charophytes" provides an assortment of new research reports and reviews on charophytes and their emerging significance as model plants.

19.
New Phytol ; 207(3): 893-904, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25900772

ABSTRACT

Shoot apical meristem (SAM) structure varies markedly within the land plants. The SAMs of many seedless vascular plants contain a conspicuous inverted, pyramidal cell called the apical cell (AC), which is unidentified in angiosperms. In this study, we use transcriptomic sequencing with precise laser microdissections of meristem subdomains to define the molecular signatures of anatomically distinct zones from the AC-type SAMs of a lycophyte (Selaginella moellendorffii) and a monilophyte (Equisetum arvense). The two model species for this study represent vascular plant lineages that diverged > 400 million yr ago. Our data comprise comprehensive molecular signatures for the distinct subdomains within AC-type SAMs, an anatomical anomaly whose functional significance has been debated in the botanical literature for over two centuries. Moreover, our data provide molecular support for distinct gene expression programs between the AC-type SAMs of Selaginella and Equisetum, as compared with the SAM transcriptome of the angiosperm maize. The results are discussed in light of the functional significance and evolutionary success of the AC-type SAM within the embryophytes.


Subject(s)
Embryophyta/cytology , Embryophyta/genetics , Meristem/cytology , Meristem/genetics , Phylogeny , Equisetum/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , In Situ Hybridization , Laser Capture Microdissection , RNA, Messenger/genetics , RNA, Messenger/metabolism , Selaginellaceae/genetics , Transcription, Genetic , Up-Regulation/genetics
20.
BMC Plant Biol ; 15: 56, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25848828

ABSTRACT

BACKGROUND: While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering plants, ferns have been largely neglected in cell wall comparative studies. RESULTS: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of lycophytes. All major matrix glycans were present as indicated by epitope detection with some variations in abundance. Pectic HG epitopes were of low abundance in lycophytes and the CCRC-M1 fucosylated xyloglucan epitope was largely absent from the Aspleniaceae. The LM15 XXXG epitope was detected widely across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. CONCLUSIONS: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans.


Subject(s)
Antibodies, Monoclonal/metabolism , Cell Wall/metabolism , Ferns/classification , Ferns/metabolism , Organ Specificity , Phylogeny , Polysaccharides/metabolism , Epitopes/metabolism , Ferns/cytology , Fluorescent Antibody Technique, Indirect , Galactans/metabolism , Glucans , Mannans/metabolism , Microarray Analysis , Pectins/metabolism , Phloem/metabolism , Plant Extracts/metabolism , Polysaccharide-Lyases/metabolism , Xylans
SELECTION OF CITATIONS
SEARCH DETAIL