Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 21(1): 1010, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34503460

ABSTRACT

BACKGROUND: OptimalTTF-2 is a randomized, comparative, multi-center, investigator-initiated, interventional study aiming to test skull remodeling surgery in combination with Tumor Treating Fields therapy (TTFields) and best physicians choice medical oncological therapy for first recurrence in glioblastoma patients. OptimalTTF-2 is a phase 2 trial initiated in November 2020. Skull remodeling surgery consists of five burrholes, each 15 mm in diameter, directly over the tumor resection cavity. Preclinical research indicates that this procedure enhances the effect of Tumor Treating Fields considerably. We recently concluded a phase 1 safety/feasibility trial that indicated improved overall survival and no additional toxicity. This phase 2 trial aims to validate the efficacy of the proposed intervention. METHODS: The trial is designed as a comparative, 1:1 randomized, minimax two-stage phase 2 with an expected 70 patients to a maximum sample size of 84 patients. After 12-months follow-up of the first 52 patients, an interim futility analysis will be performed. The two trial arms will consist of either a) TTFields therapy combined with best physicians choice oncological treatment (control arm) or b) skull remodeling surgery, TTFields therapy and best practice oncology (interventional arm). Major eligibility criteria include age ≥ 18 years, 1st recurrence of supratentorial glioblastoma, Karnofsky performance score ≥ 70, focal tumor, and lack of significant co-morbidity. Study design aims to detect a 20% increase in overall survival after 12 months (OS12), assuming OS12 = 40% in the control group and OS12 = 60% in the intervention group. Secondary endpoints include hazard rate ratio of overall survival and progression-free survival, objective tumor response rate, quality of life, KPS, steroid dose, and toxicity. Toxicity, objective tumor response rate, and QoL will be assessed every 3rd month. Endpoint data will be collected at the end of the trial, including the occurrence of suspected unexpected serious adverse reactions (SUSARs), unacceptable serious adverse events (SAEs), withdrawal of consent, or loss-to-follow-up. DISCUSSION: New treatment modalities are highly needed for first recurrence glioblastoma. Our proposed treatment modality of skull remodeling surgery, Tumor Treating Fields, and best practice medical oncological therapy may increase overall survival significantly. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0422399 , registered 13. January 2020.


Subject(s)
Brain Neoplasms/surgery , Glioblastoma/surgery , Neoplasm Recurrence, Local/surgery , Osteotomy/methods , Skull/surgery , Adult , Follow-Up Studies , Glioblastoma/mortality , Humans , Karnofsky Performance Status , Neoplasm Recurrence, Local/mortality , Progression-Free Survival , Prospective Studies , Quality of Life , Time Factors , Transducers
2.
BMC Musculoskelet Disord ; 22(1): 458, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011351

ABSTRACT

BACKGROUND: Low-back pain, including facet joint pain, accounts for up to 20 % of all sick leaves in DenmarkA proposed treatment option is cryoneurolysis. This study aims to investigate the effect of cryoneurolysis in lumbar facet joint pain syndrome. METHODS: A single-center randomized controlled trial (RCT) is performed including 120 participants with chronic facet joint pain syndrome, referred to the Department of Neurosurgery, Aarhus University Hospital. Eligible patients receive a diagnostic anesthetic block, where a reduction of pain intensity ≥ 50 % on a numerical rating scale (NRS) is required to be enrolled. Participants are randomized into three groups to undergo either one treatment of cryoneurolysis, radiofrequency ablation or placebo. Fluoroscopy and sensory stimulation is used to identify the intended target nerve prior to administrating the above-mentioned treatments. All groups receive physiotherapy for 6 weeks, starting 4 weeks after treatment. The primary outcome is the patients' impression of change in pain after intervention (Patient Global Impression of Change (PGIC)) at 4 weeks follow-up, prior to physiotherapy. Secondary outcomes are a reduction in low-back pain intensity (numeric rating scale) and quality of life (EQ-5D, SF-36) and level of function (Oswestry Disability Index), psychological perception of pain (Pain Catastrophizing Scale) and depression status (Major Depression Inventory). Data will be assessed at baseline (T0), randomization (T1), day one (T2), 4 weeks (T3), 3 (T4), 6 (T5) and 12 months (T6). DISCUSSION: This study will provide information on the effectiveness of cryoneurolysis vs. the effectiveness of radiofrequency ablation or placebo for patients with facet joint pain, and help to establish whether cryoneurolysis should be implemented in clinical practice for this patient population. TRIAL REGISTRATION: The trial is approved by the ethical committee of Central Jutland Denmark with registration number 1-10-72-27-19 and the Danish Data Protection Agency with registration number 666,852. The study is registered at Clinicaltrial.gov with the ID number NCT04786145 .


Subject(s)
Chronic Pain , Low Back Pain , Zygapophyseal Joint , Back Pain , Humans , Low Back Pain/diagnosis , Low Back Pain/surgery , Randomized Controlled Trials as Topic , Treatment Outcome
3.
Acta Anaesthesiol Scand ; 56(8): 995-1005, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22409633

ABSTRACT

BACKGROUND: Brain death and complications to brain death affects the function of organs in the potential donor. Previous animal models of brain death have not been able to fully elucidate the mechanisms behind this organ dysfunction, and none of the available animal models mimic the most common insult prior to brain death: intracerebral haemorrhage. The objective of this study was to develop a large animal model of brain death based on a controlled intracerebral haemorrhage and verified by computerised tomographic angiography (CTA). METHODS: Twenty pigs (range: 26.6-31.2 kg) were randomised to brain death or control. Brain death was induced by infusion of blood through a stereotaxically placed needle in the internal capsule. Brain death was confirmed by the measured intracranial pressure (ICP), lack of corneal and pupillary light reflexes, and atropine test. CTA was performed 120-180 min after brain death. The pigs were observed for 8 h after brain death. RESULTS: Brain death was declared when the ICP exceeded mean arterial pressure after a median of 36 min (range: 28-51 min). Significant increases in heart rate, and mean arterial pressure (MAP) were followed by a steep decrease. With fluid therapy, the animals demonstrated haemodynamic stability. Reflexes disappeared, and atropine did not induce an increase in heart rate in the brain dead animals. CTA confirmed loss of cerebral circulation. CONCLUSION: This study offers a standardised, clinically relevant porcine model of brain death induced by a haemorrhagic attack. Brain death was verified by the disappearance of corneal and pupil reflex, atropine test, and CTA.


Subject(s)
Brain Death/physiopathology , Cerebral Angiography/methods , Cerebral Hemorrhage/diagnostic imaging , Animals , Arterial Pressure/drug effects , Atropine , Blood Gas Analysis , Cardiac Output/physiology , Disease Models, Animal , Female , Hemodynamics/drug effects , Hormones/blood , Intracranial Pressure/drug effects , Lactic Acid/blood , Muscarinic Antagonists , Oxygen Consumption/physiology , Reflex/physiology , Resuscitation , Swine , Tomography, X-Ray Computed , Water-Electrolyte Balance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...