Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 584(7821): 484, 2020 08.
Article in English | MEDLINE | ID: mdl-32699408

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
J Chem Phys ; 152(5): 054104, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32035436

ABSTRACT

We discuss the commonly encountered problem when optimizing nuclear magnetic resonance (NMR) pulses using optimal control that the otherwise very precise NMR theory does not provide as excellent agreement with experiments. We hypothesize that this disagreement is due to phase transients in the pulse due to abrupt phase and amplitude changes resulting in a large bandwidth. We apply the gradient optimization using parametrization algorithm that gives high fidelity pulses with a low bandwidth compared to the typical gradient ascent pulse engineering pulses. Our results obtain a better agreement between experiments and simulations supporting our hypothesis and solution to the problem.

4.
Proc Natl Acad Sci U S A ; 115(48): E11231-E11237, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30413625

ABSTRACT

We introduce a remote interface to control and optimize the experimental production of Bose-Einstein condensates (BECs) and find improved solutions using two distinct implementations. First, a team of theoreticians used a remote version of their dressed chopped random basis optimization algorithm (RedCRAB), and second, a gamified interface allowed 600 citizen scientists from around the world to participate in real-time optimization. Quantitative studies of player search behavior demonstrated that they collectively engage in a combination of local and global searches. This form of multiagent adaptive search prevents premature convergence by the explorative behavior of low-performing players while high-performing players locally refine their solutions. In addition, many successful citizen science games have relied on a problem representation that directly engaged the visual or experiential intuition of the players. Here we demonstrate that citizen scientists can also be successful in an entirely abstract problem visualization. This is encouraging because a much wider range of challenges could potentially be opened to gamification in the future.

5.
Nature ; 532(7598): 210-3, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27075097

ABSTRACT

Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.


Subject(s)
Crowdsourcing , Games, Experimental , Intuition , Problem Solving , Quantum Theory , Video Games/psychology , Algorithms , Humans , Optical Tweezers
SELECTION OF CITATIONS
SEARCH DETAIL
...