Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(18): e37154, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39318799

ABSTRACT

Remote sensing (RS) scene classification has received significant consideration because of its extensive use by the RS community. Scene classification in satellite images has widespread uses in remote surveillance, environmental observation, remote scene analysis, urban planning, and earth observations. Because of the immense benefits of the land scene classification task, various approaches have been presented recently for automatically classifying land scenes from remote sensing images (RSIs). Several approaches dependent upon convolutional neural networks (CNNs) are presented for classifying brutal RS scenes; however, they could only partially capture the context from RSIs due to the problematic texture, cluttered context, tiny size of objects, and considerable differences in object scale. This article designs a Remote Sensing Scene Classification using Dung Beetle Optimization with Enhanced Deep Learning (RSSC-DBOEDL) approach. The purpose of the RSSC-DBOEDL technique is to categorize different varieties of scenes that exist in the RSI. In the presented RSSC-DBOEDL technique, the enhanced MobileNet model is primarily deployed as a feature extractor. The DBO method could be implemented in this study for hyperparameter tuning of the enhanced MobileNet model. The RSSC-DBOEDL technique uses a multi-head attention-based long short-term memory (MHA-LSTM) technique to classify the scenes in the RSI. The simulation evaluation of the RSSC-DBOEDL approach has been examined under the benchmark RSI datasets. The simulation results of the RSSC-DBOEDL approach exhibited a more excellent accuracy outcome of 98.75 % and 95.07 % under UC Merced and EuroSAT datasets with other existing methods regarding distinct measures.

2.
Cancers (Basel) ; 15(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37046806

ABSTRACT

Artificial Intelligence (AI) techniques have changed the general perceptions about medical diagnostics, especially after the introduction and development of Convolutional Neural Networks (CNN) and advanced Deep Learning (DL) and Machine Learning (ML) approaches. In general, dermatologists visually inspect the images and assess the morphological variables such as borders, colors, and shapes to diagnose the disease. In this background, AI techniques make use of algorithms and computer systems to mimic the cognitive functions of the human brain and assist clinicians and researchers. In recent years, AI has been applied extensively in the domain of dermatology, especially for the detection and classification of skin cancer and other general skin diseases. In this research article, the authors propose an Optimal Multi-Attention Fusion Convolutional Neural Network-based Skin Cancer Diagnosis (MAFCNN-SCD) technique for the detection of skin cancer in dermoscopic images. The primary aim of the proposed MAFCNN-SCD technique is to classify skin cancer on dermoscopic images. In the presented MAFCNN-SCD technique, the data pre-processing is performed at the initial stage. Next, the MAFNet method is applied as a feature extractor with Henry Gas Solubility Optimization (HGSO) algorithm as a hyperparameter optimizer. Finally, the Deep Belief Network (DBN) method is exploited for the detection and classification of skin cancer. A sequence of simulations was conducted to establish the superior performance of the proposed MAFCNN-SCD approach. The comprehensive comparative analysis outcomes confirmed the supreme performance of the proposed MAFCNN-SCD technique over other methodologies.

3.
Cancers (Basel) ; 14(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36428752

ABSTRACT

Gastric cancer (GC) diagnoses using endoscopic images have gained significant attention in the healthcare sector. The recent advancements of computer vision (CV) and deep learning (DL) technologies pave the way for the design of automated GC diagnosis models. Therefore, this study develops a new Manta Ray Foraging Optimization Transfer Learning technique that is based on Gastric Cancer Diagnosis and Classification (MRFOTL-GCDC) using endoscopic images. For enhancing the quality of the endoscopic images, the presented MRFOTL-GCDC technique executes the Wiener filter (WF) to perform a noise removal process. In the presented MRFOTL-GCDC technique, MRFO with SqueezeNet model is used to derive the feature vectors. Since the trial-and-error hyperparameter tuning is a tedious process, the MRFO algorithm-based hyperparameter tuning results in enhanced classification results. Finally, the Elman Neural Network (ENN) model is utilized for the GC classification. To depict the enhanced performance of the presented MRFOTL-GCDC technique, a widespread simulation analysis is executed. The comparison study reported the improvement of the MRFOTL-GCDC technique for endoscopic image classification purposes with an improved accuracy of 99.25%.

SELECTION OF CITATIONS
SEARCH DETAIL