Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Chembiochem ; 14(14): 1772-9, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-23868186

ABSTRACT

The partially disordered δ subunit of RNA polymerase was studied by various NMR techniques. The structure of the well-folded N-terminal domain was determined based on inter-proton distances in NOESY spectra. The obtained structural model was compared to the previously determined structure of a truncated construct (lacking the C-terminal domain). Only marginal differences were identified, thus indicating that the first structural model was not significantly compromised by the absence of the C-terminal domain. Various (15) N relaxation experiments were employed to describe the flexibility of both domains. The relaxation data revealed that the C-terminal domain is more flexible, but its flexibility is not uniform. By using paramagnetic labels, transient contacts of the C-terminal tail with the N-terminal domain and with itself were identified. A propensity of the C-terminal domain to form ß-type structures was obtained by chemical shift analysis. Comparison with the paramagnetic relaxation enhancement indicated a well-balanced interplay of repulsive and attractive electrostatic interactions governing the conformational behavior of the C-terminal domain. The results showed that the δ subunit consists of a well-ordered N-terminal domain and a flexible C-terminal domain that exhibits a complex hierarchy of partial ordering.


Subject(s)
Bacillus subtilis/enzymology , DNA-Directed RNA Polymerases/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL