Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2806: 19-30, 2024.
Article in English | MEDLINE | ID: mdl-38676793

ABSTRACT

Patient-derived xenografts (PDXs), established by implanting patient tumor cells into immunodeficient mice, offer a platform for faithfully replicating human tumors. They closely mimic the histopathology, genomics, and drug sensitivity of patient tumors. This chapter highlights the versatile applications of PDXs, including studying tumor biology, metastasis, and chemoresistance, as well as their use in biomarker identification, drug screening, and personalized medicine. It also addresses challenges in using PDXs in cancer research, including variations in metastatic potential, lengthy establishment timelines, stromal changes, and limitations in immunocompromised models. Despite these challenges, PDXs remain invaluable tools guiding patient treatment and advancing preclinical drug development.


Subject(s)
Biomarkers, Tumor , Precision Medicine , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Biomarkers, Tumor/metabolism , Precision Medicine/methods , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Drug Development/methods , Drug Discovery/methods , Disease Models, Animal , Antineoplastic Agents/pharmacology
2.
Methods Mol Biol ; 2806: 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38676791

ABSTRACT

Patient-derived xenografts (PDXs) represent a critical advancement in preclinical cancer research, wherein human tumor samples are implanted into animal models for evaluation of therapeutic responses. PDXs have emerged as indispensable tools in translational cancer research, facilitating investigation into tumor microenvironments and personalized medicine. This chapter elucidates the historical evolution of PDXs, from early attempts in the eighteenth century to contemporary immunocompromised host models that enhance engraftment success.


Subject(s)
Immunocompromised Host , Translational Research, Biomedical , Humans , Animals , Translational Research, Biomedical/methods , Disease Models, Animal , Mice , Xenograft Model Antitumor Assays/methods , Neoplasms/immunology , Neoplasms/pathology , Heterografts , History, 20th Century , Precision Medicine/methods , Tumor Microenvironment/immunology , History, 21st Century
3.
Cancer Sci ; 115(6): 1834-1850, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594840

ABSTRACT

Constitutively active KRAS mutations are among the major drivers of lung cancer, yet the identity of molecular co-operators of oncogenic KRAS in the lung remains ill-defined. The innate immune cytosolic DNA sensor and pattern recognition receptor (PRR) Absent-in-melanoma 2 (AIM2) is best known for its assembly of multiprotein inflammasome complexes and promoting an inflammatory response. Here, we define a role for AIM2, independent of inflammasomes, in KRAS-addicted lung adenocarcinoma (LAC). In genetically defined and experimentally induced (nicotine-derived nitrosamine ketone; NNK) LAC mouse models harboring the KrasG12D driver mutation, AIM2 was highly upregulated compared with other cytosolic DNA sensors and inflammasome-associated PRRs. Genetic ablation of AIM2 in KrasG12D and NNK-induced LAC mouse models significantly reduced tumor growth, coincident with reduced cellular proliferation in the lung. Bone marrow chimeras suggest a requirement for AIM2 in KrasG12D-driven LAC in both hematopoietic (immune) and non-hematopoietic (epithelial) cellular compartments, which is supported by upregulated AIM2 expression in immune and epithelial cells of mutant KRAS lung tissues. Notably, protection against LAC in AIM2-deficient mice is associated with unaltered protein levels of mature Caspase-1 and IL-1ß inflammasome effectors. Moreover, genetic ablation of the key inflammasome adapter, ASC, did not suppress KrasG12D-driven LAC. In support of these in vivo findings, AIM2, but not mature Caspase-1, was upregulated in human LAC patient tumor biopsies. Collectively, our findings reveal that endogenous AIM2 plays a tumor-promoting role, independent of inflammasomes, in mutant KRAS-addicted LAC, and suggest innate immune DNA sensing may provide an avenue to explore new therapeutic strategies in lung cancer.


Subject(s)
Adenocarcinoma of Lung , DNA-Binding Proteins , Inflammasomes , Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Inflammasomes/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Caspase 1/metabolism , Caspase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Mutation , Nitrosamines , Female , Cytosol/metabolism , Cell Proliferation , Cell Line, Tumor
4.
Methods Mol Biol ; 2806: 9-18, 2024.
Article in English | MEDLINE | ID: mdl-38676792

ABSTRACT

Patient-derived xenografts (PDXs) have emerged as a pivotal tool in translational cancer research, addressing limitations of traditional methods and facilitating improved therapeutic interventions. These models involve engrafting human primary malignant cells or tissues into immunodeficient mice, allowing for the investigation of cancer mechanobiology, validation of therapeutic targets, and preclinical assessment of treatment strategies. This chapter provides an overview of PDXs methodology and their applications in both basic cancer research and preclinical studies. Despite current limitations, ongoing advancements in humanized xenochimeric models and autologous immune cell engraftment hold promise for enhancing PDX model accuracy and relevance. As PDX models continue to refine and extend their applications, they are poised to play a pivotal role in shaping the future of translational cancer research.


Subject(s)
Neoplasms , Xenograft Model Antitumor Assays , Humans , Animals , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/immunology , Mice , Xenograft Model Antitumor Assays/methods , Disease Models, Animal , Heterografts , Translational Research, Biomedical/methods
5.
FEBS J ; 291(1): 10-24, 2024 01.
Article in English | MEDLINE | ID: mdl-37540030

ABSTRACT

The protease A Disintegrin And Metalloproteinase 17 (ADAM17) plays a central role in the pathophysiology of several diseases. ADAM17 is involved in the cleavage and shedding of at least 80 known membrane-tethered proteins, which subsequently modulate several intracellular signaling pathways, and therefore alter cell behavior. Dysregulated expression and/or activation of ADAM17 has been linked to a wide range of autoimmune and inflammatory diseases, cancer, and cardiovascular disease. In this review, we provide an overview of the current state of knowledge from preclinical models and clinical data on the diverse pathophysiological roles of ADAM17, and discuss the mechanisms underlying ADAM17-mediated protein shedding and the potential therapeutic implications of targeting ADAM17 in these diseases.


Subject(s)
ADAM Proteins , Neoplasms , Humans , ADAM Proteins/metabolism , ADAM Proteins/therapeutic use , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Endopeptidases , Neoplasms/genetics , Neoplasms/drug therapy , Membrane Proteins/metabolism , Inflammation
6.
Methods Mol Biol ; 2691: 71-80, 2023.
Article in English | MEDLINE | ID: mdl-37355538

ABSTRACT

Acute pancreatitis is a serious inflammatory disease of the pancreas that can lead to lung injury. Despite extensive research, the mechanisms underlying this complication are ill-defined. In recent years, in vitro co-culture systems have emerged as powerful tools for studying complex interactions between different cell types in disease. In the context of pancreatitis, pancreatic acinar epithelial cells produce and secrete digestive enzymes, and their cellular damage, death, and/or dysfunction is a major contributing factor to the onset of pancreatitis. Here, in this chapter we describe a co-culture system of acinar cells and lung epithelial progenitor/stem cells to model for lung injury associated with pancreatitis.


Subject(s)
Acute Lung Injury , Pancreatitis , Mice , Animals , Coculture Techniques , Acute Disease , Pancreas/metabolism , Acinar Cells/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism
7.
Proc Natl Acad Sci U S A ; 119(42): e2213744119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215509

ABSTRACT

Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.


Subject(s)
Nitrosamines , Pancreatitis , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Acute Disease , Animals , Carcinogens , Ceruletide/toxicity , Cytokines , Disintegrins , Endopeptidases , Fibrosis , Interleukin-6/genetics , Interleukin-6/metabolism , Ketones , Mice , Nicotine , Pancreatitis/drug therapy , Pancreatitis/genetics , Peptide Hydrolases , Tumor Necrosis Factor-alpha/metabolism
8.
Proc Natl Acad Sci U S A ; 119(36): e2201494119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037355

ABSTRACT

Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1ß but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1ß and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.


Subject(s)
DNA-Binding Proteins , Immunity, Innate , Interleukin-1beta , Interleukin-6 , Pulmonary Emphysema , Animals , Apoptosis , Caspase 1/metabolism , Cytokine Receptor gp130/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Pulmonary Emphysema/immunology
9.
Gut ; 71(8): 1515-1531, 2022 08.
Article in English | MEDLINE | ID: mdl-34489308

ABSTRACT

OBJECTIVE: The absent in melanoma 2 (AIM2) cytosolic pattern recognition receptor and DNA sensor promotes the pathogenesis of autoimmune and chronic inflammatory diseases via caspase-1-containing inflammasome complexes. However, the role of AIM2 in cancer is ill-defined. DESIGN: The expression of AIM2 and its clinical significance was assessed in human gastric cancer (GC) patient cohorts. Genetic or therapeutic manipulation of AIM2 expression and activity was performed in the genetically engineered gp130 F/F spontaneous GC mouse model, as well as human GC cell line xenografts. The biological role and mechanism of action of AIM2 in gastric tumourigenesis, including its involvement in inflammasome activity and functional interaction with microtubule-associated end-binding protein 1 (EB1), was determined in vitro and in vivo. RESULTS: AIM2 expression is upregulated by interleukin-11 cytokine-mediated activation of the oncogenic latent transcription factor STAT3 in the tumour epithelium of GC mouse models and patients with GC. Genetic and therapeutic targeting of AIM2 in gp130 F/F mice suppressed tumourigenesis. Conversely, AIM2 overexpression augmented the tumour load of human GC cell line xenografts. The protumourigenic function of AIM2 was independent of inflammasome activity and inflammation. Rather, in vivo and in vitro AIM2 physically interacted with EB1 to promote epithelial cell migration and tumourigenesis. Furthermore, upregulated expression of AIM2 and EB1 in the tumour epithelium of patients with GC was independently associated with poor patient survival. CONCLUSION: AIM2 can play a driver role in epithelial carcinogenesis by linking cytokine-STAT3 signalling, innate immunity and epithelial cell migration, independent of inflammasome activation.


Subject(s)
Melanoma , Stomach Neoplasms , Animals , Carcinogenesis/genetics , Cell Movement/genetics , Cytokine Receptor gp130/metabolism , DNA , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Immunity, Innate/genetics , Inflammasomes/genetics , Inflammasomes/metabolism , Mice , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/pathology , Up-Regulation
10.
Oncogene ; 41(6): 809-823, 2022 02.
Article in English | MEDLINE | ID: mdl-34857889

ABSTRACT

The oncogenic potential of the latent transcription factor signal transducer and activator of transcription (STAT)3 in many human cancers, including lung cancer, has been largely attributed to its nuclear activity as a tyrosine-phosphorylated (pY705 site) transcription factor. By contrast, an alternate mitochondrial pool of serine phosphorylated (pS727 site) STAT3 has been shown to promote tumourigenesis by regulating metabolic processes, although this has been reported in only a restricted number of mutant RAS-addicted neoplasms. Therefore, the involvement of STAT3 serine phosphorylation in the pathogenesis of most cancer types, including mutant KRAS lung adenocarcinoma (LAC), is unknown. Here, we demonstrate that LAC is suppressed in oncogenic KrasG12D-driven mouse models engineered for pS727-STAT3 deficiency. The proliferative potential of the transformed KrasG12D lung epithelium, and mutant KRAS human LAC cells, was significantly reduced upon pS727-STAT3 deficiency. Notably, we uncover the multifaceted capacity of constitutive pS727-STAT3 to metabolically reprogramme LAC cells towards a hyper-proliferative state by regulating nuclear and mitochondrial (mt) gene transcription, the latter via the mtDNA transcription factor, TFAM. Collectively, our findings reveal an obligate requirement for the transcriptional activity of pS727-STAT3 in mutant KRAS-driven LAC with potential to guide future therapeutic targeting approaches.


Subject(s)
Serine
11.
Cancers (Basel) ; 13(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203378

ABSTRACT

Tumour-associated neutrophils (TANs) can support tumour growth by suppressing cytotoxic lymphocytes. AT-RvD1 is an eicosanoid that can antagonise neutrophil trafficking instigated by ALX/FPR2 ligands such as serum amyloid A (SAA). We aimed to establish whether SAA and ALOX5 expression associates with TANs and investigate the immunomodulatory actions of AT-RvD1 in vivo. MPO-positive neutrophils were quantified in tumour blocks from lung adenocarcinoma (n = 48) and control tissue (n = 20) by IHC. Tumour expression of SAA and ALOX5 were analysed by RTqPCR and an oncogenic KrasG12D lung adenocarcinoma mouse model was used to investigate the in vivo efficacy of AT-RvD1 treatment. ALOX5 expression was markedly reduced in lung adenocarcinoma tumours. The SAA/ALOX5 ratio strongly correlated with TANs and was significantly increased in tumours harbouring an oncogenic KRAS mutation. AT-RvD1 treatment reduced tumour growth in KrasG12D mice, which was accompanied by suppressed cellular proliferation within parenchymal lesions. In addition, AT-RvD1 significantly reduced the neutrophil to lymphocyte ratio (NLR), an established prognostic marker of poor survival in adenocarcinoma. This study identifies a novel molecular signature whereby elevated levels of SAA relative to ALOX5 favour accumulation of TANs. Furthermore, the ALOX5/5-LO enzymatic product, AT-RvD1, markedly reduced the NLR and suppressed tumour growth in KrasG12D mice.

12.
Cytokine ; 143: 155520, 2021 07.
Article in English | MEDLINE | ID: mdl-33875334

ABSTRACT

Chronic lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis represent a major burden on healthcare systems with limited effective therapeutic options. Developing effective treatments for these debilitating diseases requires an understanding of how alterations at the molecular level affect lung macroscopic architecture. A common theme among these lung disorders is the presence of an underlying dysregulated immune system which can lead to sustained chronic inflammation. In this respect, several inflammatory cytokines have been implicated in the pathogenesis of lung diseases, thus leading to the notion that cytokines are attractive therapeutic targets for these disorders. In this review, we discuss and highlight the recent breakthroughs that have enhanced our understanding of the role of the interleukin (IL)-6 family of cytokines in lung homeostasis and chronic diseases including asthma, COPD, lung fibrosis and lung cancer.


Subject(s)
Interleukin-6/metabolism , Respiratory System/metabolism , Respiratory Tract Diseases/metabolism , Animals , Humans , Models, Biological , Regeneration , Respiratory System/pathology , Respiratory System/virology , Respiratory Tract Diseases/virology , Signal Transduction
13.
Methods Mol Biol ; 2279: 165-173, 2021.
Article in English | MEDLINE | ID: mdl-33683693

ABSTRACT

Patient-derived xenografts (PDXs) are created by implanting human tumor tissue or cells into immunodeficent mice, and enable the study of tumor biology, biomarkers and response to therapy in vivo. This chapter describes a method for lung adenocarcinoma (LAC) PDX generation using subcutaneous implantation of tumor tissue and cell suspensions and incorporating the humanization of PDX models by reconstitution with human immune cells.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplasm Transplantation , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Female , Heterografts , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID
14.
Am J Respir Cell Mol Biol ; 64(2): 183-195, 2021 02.
Article in English | MEDLINE | ID: mdl-33181031

ABSTRACT

Pulmonary emphysema is the major debilitating component of chronic obstructive pulmonary disease (COPD), which is a leading cause of morbidity and mortality worldwide. The ADAM17 (A disintegrin and metalloproteinase 17) protease mediates inflammation via ectodomain shedding of numerous proinflammatory cytokines, cytokine receptors, and adhesion molecules; however, its role in the pathogenesis of emphysema and COPD is poorly understood. This study aims to define the role of the protease ADAM17 in the pathogenesis of pulmonary emphysema. ADAM17 protein expression and activation was investigated in lung biopsies from patients with emphysema, as well as lungs of the emphysematous gp130F/F mouse model and an acute (4 d) cigarette smoke (CS)-induced lung pathology model. The Adam17ex/ex mice, which display significantly reduced global ADAM17 expression, were coupled with emphysema-prone gp130F/F mice to produce gp130F/F:Adam17ex/ex. Both Adam17ex/ex and wild-type mice were subjected to acute CS exposure. Histological, immunohistochemical, immunofluorescence, and molecular analyses as well as lung function tests were performed to assess pulmonary emphysema, inflammation, and alveolar cell apoptosis. ADAM17 was hyperphosphorylated in the lungs of patients with emphysema and also in emphysematous gp130F/F and CS-exposed mice. ADAM17 deficiency ameliorated the development of pulmonary emphysema in gp130F/F mice by suppressing elevated alveolar cell apoptosis. In addition, genetic blockade of ADAM17 protected mice from CS-induced pulmonary inflammation and alveolar cell apoptosis. Our study places the protease ADAM17 as a central molecular switch implicated in the development of pulmonary emphysema, which paves the way for using ADAM17 inhibitors as potential therapeutic agents to treat COPD and emphysema.


Subject(s)
ADAM17 Protein/deficiency , ADAM17 Protein/metabolism , Lung/metabolism , Pulmonary Emphysema/metabolism , Animals , Apoptosis/physiology , Cytokines/metabolism , Humans , Mice , Pneumonia/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoking/adverse effects , Nicotiana/adverse effects
15.
Clin Sci (Lond) ; 134(20): 2665-2679, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33000862

ABSTRACT

There is a growing appreciation of the role of lung stem/progenitor cells in the development and perpetuation of chronic lung disease including idiopathic pulmonary fibrosis. Human amniotic epithelial cells (hAECs) were previously shown to improve lung architecture in bleomycin-induced lung injury, with the further suggestion that hAECs obtained from term pregnancies possessed superior anti-fibrotic properties compared with their preterm counterparts. In the present study, we aimed to elucidate the differential effects of hAECs from term and preterm pregnancies on lung stem/progenitor cells involved in the repair. Here we showed that term hAECs were better able to activate bronchioalveolar stem cells (BASCs) and type 2 alveolar epithelial cells (AT2s) compared with preterm hAECs following bleomycin challenge. Further, we observed that term hAECs restored TGIF1 and TGFß2 expression levels, while increasing c-MYC expression despite an absence of significant changes to Wnt/ß-catenin signaling. In vitro, term hAECs increased the average size and numbers of BASC and AT2 colonies. The gene expression levels of Wnt ligands were higher in term hAECs, and the expression levels of BMP4, CCND1 and CDC42 were only increased in the BASC and AT2 organoids co-cultured with hAECs from term pregnancies but not preterm pregnancies. In conclusion, term hAECs were more efficient at activating the BASC niche compared with preterm hAECs. The impact of gestational age and/or complications leading to preterm delivery should be considered when applying hAECs and other gestational tissue-derived stem and stem-like cells therapeutically.


Subject(s)
Amnion/cytology , Epithelial Cells/cytology , Lung/physiology , Premature Birth/pathology , Regeneration , Alveolar Epithelial Cells/cytology , Animals , Bleomycin , Female , Fluorescent Antibody Technique , Gene Expression Regulation , Hippo Signaling Pathway , Humans , Ligands , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Organoids/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Stem Cells/cytology , Transcription, Genetic , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
16.
Am J Pathol ; 190(6): 1256-1270, 2020 06.
Article in English | MEDLINE | ID: mdl-32201262

ABSTRACT

Gastric cancer is associated with chronic inflammation (gastritis) triggered by persistent Helicobacter pylori (H. pylori) infection. Elevated tyrosine phosphorylation of the latent transcription factor STAT3 is a feature of gastric cancer, including H. pylori-infected tissues, and aligns with nuclear transcriptional activity. However, the transcriptional role of STAT3 serine phosphorylation, which promotes STAT3-driven mitochondrial activities, is unclear. Here, by coupling serine-phosphorylated (pS)-STAT3-deficient Stat3SA/SA mice with chronic H. felis infection, which mimics human H. pylori infection in mice, we reveal a key role for pS-STAT3 in promoting Helicobacter-induced gastric pathology. Immunohistochemical staining for infiltrating immune cells and expression analyses of inflammatory genes revealed that gastritis was markedly suppressed in infected Stat3SA/SA mice compared with wild-type mice. Stomach weight and gastric mucosal thickness were also reduced in infected Stat3SA/SA mice, which was associated with reduced proliferative potential of infected Stat3SA/SA gastric mucosa. The suppressed H. felis-induced gastric phenotype of Stat3SA/SA mice was phenocopied upon genetic ablation of signaling by the cytokine IL-11, which promotes gastric tumorigenesis via STAT3. pS-STAT3 dependency by Helicobacter coincided with transcriptional activity on STAT3-regulated genes, rather than mitochondrial and metabolic genes. In the gastric mucosa of mice and patients with gastritis, pS-STAT3 was constitutively expressed irrespective of Helicobacter infection. Collectively, these findings suggest an obligate requirement for IL-11 signaling via constitutive pS-STAT3 in Helicobacter-induced gastric carcinogenesis.


Subject(s)
Gastric Mucosa/metabolism , Gastritis/metabolism , Helicobacter Infections/metabolism , STAT3 Transcription Factor/metabolism , Animals , Gastric Mucosa/pathology , Gastritis/pathology , Helicobacter , Helicobacter Infections/pathology , Humans , Mice , Mitochondria/metabolism , Phosphorylation , Signal Transduction
17.
Carcinogenesis ; 41(4): 527-538, 2020 06 17.
Article in English | MEDLINE | ID: mdl-31257400

ABSTRACT

Lung cancer is the leading cause of cancer-related mortality, with most cases attributed to tobacco smoking, in which nicotine-derived nitrosamine ketone (NNK) is the most potent lung carcinogen. The ADAM17 protease is responsible for the ectodomain shedding of many pro-tumorigenic cytokines, growth factors and receptors, and therefore is an attractive target in cancer. However, the role of ADAM17 in promoting tobacco smoke carcinogen-induced lung carcinogenesis is unknown. The hypomorphic Adam17ex/ex mice-characterized by reduced global ADAM17 expression-were backcrossed onto the NNK-sensitive pseudo-A/J background. CRISPR-driven and inhibitor-based (GW280264X, and ADAM17 prodomain) ADAM17 targeting was employed in the human lung adenocarcinoma cell lines A549 and NCI-H23. Human lung cancer biopsies were also used for analyses. The Adam17ex/ex mice displayed marked protection against NNK-induced lung adenocarcinoma. Specifically, the number and size of lung lesions in NNK-treated pseudo-A/J Adam17ex/ex mice were significantly reduced compared with wild-type littermate controls. This was associated with lower proliferative index throughout the lung epithelium. ADAM17 targeting in A549 and NCI-H23 cells led to reduced proliferative and colony-forming capacities. Notably, among select ADAM17 substrates, ADAM17 deficiency abrogated shedding of the soluble IL-6 receptor (sIL-6R), which coincided with the blockade of sIL-6R-mediated trans-signaling via ERK MAPK cascade. Furthermore, NNK upregulated phosphorylation of p38 MAPK, whose pharmacological inhibition suppressed ADAM17 threonine phosphorylation. Importantly, ADAM17 threonine phosphorylation was significantly upregulated in human lung adenocarcinoma with smoking history compared with their cancer-free controls. Our study identifies the ADAM17/sIL-6R/ERK MAPK axis as a candidate therapeutic strategy against tobacco smoke-associated lung carcinogenesis.


Subject(s)
ADAM17 Protein/metabolism , Adenocarcinoma of Lung/etiology , Carcinogenesis/pathology , Lung Neoplasms/etiology , Tobacco Smoke Pollution/adverse effects , ADAM17 Protein/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogens/toxicity , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Nitrosamines/toxicity , Phosphorylation , Signal Transduction
18.
Cancer Res ; 79(20): 5272-5287, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31481496

ABSTRACT

Deregulated activation of the latent oncogenic transcription factor STAT3 in many human epithelial malignancies, including gastric cancer, has invariably been associated with its canonical tyrosine phosphorylation and enhanced transcriptional activity. By contrast, serine phosphorylation (pS) of STAT3 can augment its nuclear transcriptional activity and promote essential mitochondrial functions, yet the role of pS-STAT3 among epithelial cancers is ill-defined. Here, we reveal that genetic ablation of pS-STAT3 in the gp130 F/F spontaneous gastric cancer mouse model and human gastric cancer cell line xenografts abrogated tumor growth that coincided with reduced proliferative potential of the tumor epithelium. Microarray gene expression profiling demonstrated that the suppressed gastric tumorigenesis in pS-STAT3-deficient gp130 F/F mice associated with reduced transcriptional activity of STAT3-regulated gene networks implicated in cell proliferation and migration, inflammation, and angiogenesis, but not mitochondrial function or metabolism. Notably, the protumorigenic activity of pS-STAT3 aligned with its capacity to primarily augment RNA polymerase II-mediated transcriptional elongation, but not initiation, of STAT3 target genes. Furthermore, by using a combinatorial in vitro and in vivo proteomics approach based on the rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) assay, we identified RuvB-like AAA ATPase 1 (RUVBL1/Pontin) and enhancer of rudimentary homolog (ERH) as interacting partners of pS-STAT3 that are pivotal for its transcriptional activity on STAT3 target genes. Collectively, these findings uncover a hitherto unknown transcriptional role and obligate requirement for pS-STAT3 in gastric cancer that could be extrapolated to other STAT3-driven cancers. SIGNIFICANCE: These findings reveal a new transcriptional role and mandatory requirement for constitutive STAT3 serine phosphorylation in gastric cancer.


Subject(s)
Neoplasm Proteins/physiology , RNA Polymerase II/metabolism , STAT3 Transcription Factor/physiology , Stomach Neoplasms/genetics , Transcription, Genetic , Animals , Carcinogenesis , Cell Cycle Proteins/physiology , Cell Line, Tumor , Cells, Cultured , Cytokine Receptor gp130/deficiency , DNA Helicases/physiology , Epithelial Cells , Gastric Mucosa/cytology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Heterografts , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Neoplasm Transplantation , Phosphorylation , Phosphoserine/chemistry , Protein Processing, Post-Translational , Radiation Chimera , Specific Pathogen-Free Organisms , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transcription Factors/physiology , Tumor Burden
19.
Cancers (Basel) ; 11(9)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438559

ABSTRACT

Lung cancer is the leading cause of cancer-related mortality, which histologically is classified into small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for approximately 85% of all lung cancer diagnoses, with the majority of patients presenting with lung adenocarcinoma (LAC). KRAS mutations are a major driver of LAC, and are closely related to cigarette smoking, unlike mutations in the epidermal growth factor receptor (EGFR) which arise in never-smokers. Although the past two decades have seen fundamental progress in the treatment and diagnosis of NSCLC, NSCLC still is predominantly diagnosed at an advanced stage when therapeutic interventions are mostly palliative. A disintegrin and metalloproteinase 17 (ADAM17), also known as tumour necrosis factor-α (TNFα)-converting enzyme (TACE), is responsible for the protease-driven shedding of more than 70 membrane-tethered cytokines, growth factors and cell surface receptors. Among these, the soluble interleukin-6 receptor (sIL-6R), which drives pro-inflammatory and pro-tumourigenic IL-6 trans-signaling, along with several EGFR family ligands, are the best characterised. This large repertoire of substrates processed by ADAM17 places it as a pivotal orchestrator of a myriad of physiological and pathological processes associated with the initiation and/or progression of cancer, such as cell proliferation, survival, regeneration, differentiation and inflammation. In this review, we discuss recent research implicating ADAM17 as a key player in the development of LAC, and highlight the potential of ADAM17 inhibition as a promising therapeutic strategy to tackle this deadly malignancy.

20.
EMBO Mol Med ; 11(4)2019 04.
Article in English | MEDLINE | ID: mdl-30833304

ABSTRACT

Oncogenic KRAS mutations are major drivers of lung adenocarcinoma (LAC), yet the direct therapeutic targeting of KRAS has been problematic. Here, we reveal an obligate requirement by oncogenic KRAS for the ADAM17 protease in LAC In genetically engineered and xenograft (human cell line and patient-derived) KrasG12D-driven LAC models, the specific blockade of ADAM17, including with a non-toxic prodomain inhibitor, suppressed tumor burden by reducing cellular proliferation. The pro-tumorigenic activity of ADAM17 was dependent upon its threonine phosphorylation by p38 MAPK, along with the preferential shedding of the ADAM17 substrate, IL-6R, to release soluble IL-6R that drives IL-6 trans-signaling via the ERK1/2 MAPK pathway. The requirement for ADAM17 in KrasG12D-driven LAC was independent of bone marrow-derived immune cells. Furthermore, in KRAS mutant human LAC, there was a significant positive correlation between augmented phospho-ADAM17 levels, observed primarily in epithelial rather than immune cells, and activation of ERK and p38 MAPK pathways. Collectively, these findings identify ADAM17 as a druggable target for oncogenic KRAS-driven LAC and provide the rationale to employ ADAM17-based therapeutic strategies for targeting KRAS mutant cancers.


Subject(s)
ADAM17 Protein/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Interleukin-6/metabolism , ADAM17 Protein/antagonists & inhibitors , Animals , Cell Line, Tumor , Genotype , Humans , Lung Neoplasms/pathology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Phosphorylation , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...