Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 263(Pt 1): 129685, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394762

ABSTRACT

Microfluidic systems are capable of producing microgels with a monodisperse size distribution and a spherical shape due to their laminar flow and superior flow. A significant challenge in producing these drug-carrying microgels is simultaneous drug loading into microgels. Various factors such as the type of polymer, the type of drug, the volume ratio of the drug to the polymer, and the geometry of the microfluidic system used to generate microgels can effectively address these challenges. The overall goal of this study was to produce mono-disperse drug-carrying microgels capable of controlled drug release. To achieve this goal, this study used a stream-focused microfluidic chip containing a coating current to prevent chip clogging. Alginate oxide was synthesized with a 30 % oxidation percentage. Alginate oxide, gelatin, and compositions of them with volume ratios of 50-50, 70-30, and 30-70, by determining their appropriate weight percentage, were used for the controlled release of letrozole. The properties of the produced microgels were measured through various tests such as drug release test, loading percentage, SEM, FTIR, swelling ratio, and dimensional stability. It was found that microgels made of a combination of alginate oxide-gelatin with volume ratios of 70-30 had a good swelling ratio and structural stability. The drug loading percentages for alginate, alginate oxide, and alginate oxide-gelatin with volume ratios of 50-50 and 30-70, respectively, were 56 %, 68 %, and 66 %, 61 % and the alginate oxide-gelatin with a volume ratio of 70-30 compared to other samples had over 70 % drug loading percentages. Furthermore, samples of alginate, alginate oxide, and alginate oxide-gelatin with volume ratios of 50-50 and 30-70 had 94 %, 63 %, 56 %, and 68 % drug release in 13 days, respectively. However, alginate oxide-gelatin with a volume ratio of 70-30 had a release rate of about 50 % in 13 days, which is a more controlled release for letrozole compared to the volume ratios of 50-50 and 30-70. Examining the drug release profile, it was concluded that drug release follows the Higuchi model and therefore follows Fick's first law of diffusion. It can be concluded that the combination of alginate oxide-gelatin produces more suitable microgels than alginate and alginate oxide for the controlled-release of letrozole. A comparison of microgels of alginate oxide and gelatin with volume ratios of 50-50 and 70-30 had better results for the cytotoxicity study compared to other samples.


Subject(s)
Microgels , Microfluidics , Gelatin/chemistry , Letrozole , Oxides , Delayed-Action Preparations , Alginates/chemistry , Polymers
2.
Biomed Eng Lett ; 13(4): 671-680, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872996

ABSTRACT

Microfluidic systems with the ability to mimic the female reproductive tract (FRT) and sperm features have emerged as promising methods to separate sperm with higher quality for the assistant reproductive technology. Thereby, we designed and fabricated a microfluidic system based on FRT features with a focus on rheotaxis and thigmotaxis for passive sperm separation. In this regard, four various geometries (linear, square, zigzag, and sinusoidal) were designed, and the effect of rheotaxis and thigmotaxis were investigated. Although separated sperm in all microchannels were 100% motile, non-linear geometries were more effective than linear geometry in the term of separating the progressive sperm with high quality. In the presence of upstream flow, periodical changes in the slope of walls (in non-linear geometries) give rise to the periodical facing sperm with a high flow rate in the middle of microchannels, which was a reason for the high quality of separated sperm. However, because of sharp corners in the square and zigzag microchannels that create dead zones with a lack of upstream flow, which is noticeable via simulation results, these geometries have obstacles against sperm swimming toward the outlet, which was proved by image analysis. The sinusoidal geometry showed the highest enhancement level of the designed geometries compared to the linear geometry. Separated sperm exhibited 34.7% normal morphology, 100% motility, and 100% viability in the sinusoidal geometry. Therefore, the periodic change in the position of sperm from one wall to another wall can be a strategy for separating sperm with high quality. Graphical abstract: In the present study, we used a microfluidic system for studying the combined effects of thigmotaxis and rheotaxis for sperm separation process to achieve the successful Assisted reproductive technology (ART). The designed PDMS-based microfluidic system had four various geometries, including linear, square, zigzag, and sinusoidal. The functionality of separated sperm was evaluated by sperm tracking (ImageJ), motility assay (CASA software), and morphology assay (Papanicolaou ultrafast staining). Probing various geometries revealed 100% motility. In non-linear geometries, sperm's periodic detachment from the walls gave rise to the periodic interaction with the high flow velocity in the center of the channel, resulting in the separation of high-quality sperm with progressive motility. The collected data proved the influence of thigmotaxis on the quality of separated sperm. Morphologically improvement in separated sperm from the sinusoidal geometry was significant than others, which means the sinusoidal structure would be the best candidate for the sperm separation process. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-023-00294-8.

3.
Int J Biol Macromol ; 253(Pt 4): 127041, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37742904

ABSTRACT

Despite several progressions in the biofabrication of large-scale engineered tissues, direct biopri nting of perfusable three-dimensional (3D) vasculature remained unaddressed. Developing a feasible method to generate cell-laden thick tissue with an effective vasculature network to deliver oxygen and nutrient is crucial for preventing the formation of necrotic spots and tissue death. In this study, we developed a novel technique to directly bioprint 3D cell-laden prevascularized construct. We developed a novel bioink by mixing decellularized human amniotic membrane (dHAM) and alginate (Alg) in various ratios. The bioink with encapsulated human vein endothelial cells (HUVECs) and a crosslinker, CaCl2, were extruded via sheath and core nozzle respectively to directly bioprint a perfusable 3D vasculature construct. The various concentration of bioink was assessed from several aspects like biocompatibility, porosity, swelling, degradation, and mechanical characteristics, and accordingly, optimized concentration was selected (Alg 4 %w/v - dHAM 0.6 %w/v). Then, the crosslinked bioink without microchannel and the 3D bioprinted construct with various microchannel distances (0, 1.5 mm, 3 mm) were compared. The 3D bioprinted construct with a 1.5 mm microchannels distance demonstrated superiority owing to its 492 ± 18.8 % cell viability within 14 days, excellent tubulogenesis, remarkable expression of VEGFR-2 which play a crucial role in endothelial cell proliferation, migration, and more importantly angiogenesis, and neovascularization. This perfusable bioprinted construct also possess appropriate mechanical stability (32.35 ± 5 kPa Young's modulus) for soft tissue. Taking these advantages into the account, our new bioprinting method possesses a prominent potential for the fabrication of large-scale prevascularized tissue to serve for regenerative medicine applications like implantation, drug-screening platform, and the study of mutation disease.


Subject(s)
Bioprinting , Endothelial Cells , Humans , Bioprinting/methods , Amnion , Tissue Engineering/methods , Tissue Scaffolds , Printing, Three-Dimensional
4.
Int Endod J ; 56(4): 447-464, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36546662

ABSTRACT

AIM: The study aimed to develop a bicomponent bioactive hydrogel formed in situ and enriched with an extract of platelet-rich fibrin (PRFe) and to assess its potential for use in pulp-dentine complex tissue engineering via cell homing. METHODOLOGY: A bicomponent hydrogel based on photo-activated naturally derived polymers, methacrylated chitosan (ChitMA) and methacrylated collagen (ColMA), plus PRFe was fabricated. The optimized formulation of PRFe-loaded bicomponent hydrogel was determined by analysing the mechanical strength, swelling ratio and cell viability simultaneously. The physical, mechanical, rheological and morphological properties of the optimal hydrogel with and without PRFe were determined. Additionally, MTT, phalloidin/DAPI and live/dead assays were carried out to compare the viability, cytoskeletal morphology and migration ability of stem cells from the apical papilla (SCAP) within the developed hydrogels with and without PRFe, respectively. To further investigate the effect of PRFe on the differentiation of encapsulated SCAP, alizarin red S staining, RT-PCR analysis and immunohistochemical detection were performed. Statistical significance was established at p < .05. RESULTS: The optimized formulation of PRFe-loaded bicomponent hydrogel can be rapidly photocrosslinked using available dental light curing units. Compared to bicomponent hydrogels without PRFe, the PRFe-loaded hydrogel exhibited greater viscoelasticity and higher cytocompatibility to SCAP. Moreover, it promoted cell proliferation and migration in vitro. It also supported the odontogenic differentiation of SCAP as evidenced by its promotion of biomineralization and upregulating the gene expression for ALP, COL I, DSPP and DMP1 as well as facilitated angiogenesis by enhancing VEGFA gene expression. CONCLUSIONS: The new PRFe-loaded ChitMA/ColMA hydrogel developed within this study fulfils the criteria of injectability, cytocompatibility, chemoattractivity and bioactivity to promote odontogenic differentiation, which are fundamental requirements for scaffolds used in pulp-dentine complex regeneration via cell-homing approaches.


Subject(s)
Chitosan , Platelet-Rich Fibrin , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering , Dental Pulp , Cell Differentiation , Collagen , Chitosan/pharmacology , Dentin , Regeneration , Tissue Scaffolds/chemistry
5.
Biomicrofluidics ; 16(6): 061504, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36406340

ABSTRACT

Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications. First, the basic principles, as well as the latest developments and achievements of microfluidic-based techniques for fiber production, are introduced. Specifically, microfluidic platforms made of glass, polymers, and/or metals, including but not limited to microfluidic chips, capillary-based devices, and three-dimensional printed devices are summarized. Then, fiber production from various materials, such as alginate, gelatin, silk, collagen, and chitosan, using different microfluidic platforms with a broad range of cross-linking agents and mechanisms is described. Therefore, microfluidic spun fibers with diverse diameters ranging from submicrometer scales to hundreds of micrometers and structures, such as cylindrical, hollow, grooved, flat, core-shell, heterogeneous, helical, and peapod-like morphologies, with tunable sizes and mechanical properties are discussed in detail. Subsequently, the practical applications of microfluidic spun fibers are highlighted in sensors for biomedical or optical purposes, scaffolds for culture or encapsulation of cells in tissue engineering, and drug delivery. Finally, different limitations and challenges of the current microfluidic technologies, as well as the future perspectives and concluding remarks, are presented.

6.
Diagnostics (Basel) ; 12(11)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36428933

ABSTRACT

Due to the expansion of point-of-care devices, proposing a convenient and efficient method for blood-plasma separation would help with the use of point-of-care devices. Commercial microfluidic chips are only able to separate a limited amount of plasma, and the majority of these chips need an active valve system, which leads to increase manufacturing cost and complexity. In this research study, we designed a centrifugal microfluidic disk with a passive valve for ultra-accurate and efficient blood-plasma separation on a large scale (2-3 mL). The disk contained a separator gel, which, after applying the centrifugal force, separated the plasma and red blood cells. The passive valve worked based on the inertial force and was able to transfer more than 90% of the separated plasma to the next chamber. The results demonstrated that the separated plasma was 99.992% pure. This study compared the efficiency of the disk containing separating gel with the common lab-on-a-disk design for plasma separation. A comparison of the results showed that although the common lab-on-a-disk design could separate almost pure plasma as the disk contained separator gel, it could only transfer 60% of plasma to the next chamber.

7.
Environ Monit Assess ; 194(2): 83, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35015153

ABSTRACT

This research was conducted to determine the concentration of heavy metals (Cu, Pb, and Ni) in the sediments as well as the gill and muscle tissue of Siganus javus and two species of algae (Padina australis and Sargassum vulgare) collected from the Persian Gulf coasts of Bushehr province, which were studied using standard laboratory methods. The general form and trend of metal uptake at different stations in the gill and muscle tissue was Cu > Ni > Pb. The results of the study of metal uptake in both algae showed that the uptake of all three metals was higher in Padina species (Pb ˂ Cu ˂ Ni). The estimated daily intake (EDI), estimated weekly intake (EWI), allowable fish consumption rate limit (CRlim), and the target hazard quotients (THQ) for the consumption of this fish were also calculated. It was found that the concentration of heavy metals in the edible parts of the fish did not exceed the permissible limits proposed by the WHO, MAFF, JECFA, and NHMRC for human consumption, but the Ni concentration was higher than standard. The consumer risk indexes for non-cancerous diseases due to all metals were lower than standard. Also, the total risk index (HI) in this study was 0.065.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Environmental Biomarkers , Environmental Monitoring , Food Contamination/analysis , Humans , Indian Ocean , Iran , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
8.
J Assist Reprod Genet ; 39(1): 19-36, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35034216

ABSTRACT

Although medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices. During this study, we tried not to only point to the deficiencies of these systems, but to put forth suggestions for their improvement as well.


Subject(s)
Genitalia, Female/physiology , Sperm Count/instrumentation , Spermatozoa/cytology , Adult , Female , Genitalia, Female/microbiology , Humans , Male , Microfluidics/instrumentation , Microfluidics/methods , Microfluidics/statistics & numerical data , Reproductive Techniques, Assisted/standards , Reproductive Techniques, Assisted/trends , Sperm Count/methods , Sperm Count/trends , Spermatozoa/microbiology
9.
Int J Biol Macromol ; 193(Pt B): 2153-2164, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34800519

ABSTRACT

Despite all the advancements in tissue engineering, one of the unsolved challenges is the mass transfer limitation. Therefore, the subject of pre-vascularization in the engineered tissues gets more attention to avoid necrotic core formation. In this study, we considered a design for interconnected channels with a muscle tissue-like structure, in silico and in vitro. A sequence of simple steps make it possible for us to use the same material, gelatin, as both a sacrificial material and one of the main components of the scaffold simultaneously. We defined a new approach to quantify the repeatability of a new combination of hydrogels (Partially Oxidized Alginate + Gelatin) for extrusion-based bioprinting. Additionally, the mechanical properties, hydrogel porosity, degradation time, and swelling ratio were also evaluated. Based on all these test results, the scaffold with the optimum properties was chosen for the bioprinting of adipose derived mesenchymal stem cells (ADMSCs) in the scaffolds with and without the channels. This bioprinted scaffold with microchannels showed promising mimicry of the microenvironment, leading to higher survival and proliferation rates of the cells by up to 250%. Based on these results, it has the potential to serve as a platform for further research in vascularization, healthy/disease modelling, and stem cell differentiation.


Subject(s)
Alginates/chemistry , Gelatin/chemistry , Tissue Scaffolds/chemistry , Bioprinting/methods , Cell Differentiation/drug effects , Cells, Cultured , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/drug effects , Tissue Engineering/methods
10.
Materials (Basel) ; 14(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34300827

ABSTRACT

For bone tissue engineering, stem cell-based therapy has become a promising option. Recently, cell transplantation supported by polymeric carriers has been increasingly evaluated. Herein, we encapsulated human olfactory ectomesenchymal stem cells (OE-MSC) in the collagen hydrogel system, and their osteogenic potential was assessed in vitro and in vivo conditions. Collagen type I was composed of four different concentrations of (4 mg/mL, 5 mg/mL, 6 mg/mL, 7 mg/mL). SDS-Page, FTIR, rheologic test, resazurin assay, live/dead assay, and SEM were used to characterize collagen hydrogels. OE-MSCs encapsulated in the optimum concentration of collagen hydrogel and transplanted in rat calvarial defects. The tissue samples were harvested after 4- and 8-weeks post-transplantation and assessed by optical imaging, micro CT, and H&E staining methods. The highest porosity and biocompatibility were confirmed in all scaffolds. The collagen hydrogel with 7 mg/mL concentration was presented as optimal mechanical properties close to the naïve bone. Furthermore, the same concentration illustrated high osteogenic differentiation confirmed by real-time PCR and alizarin red S methods. Bone healing has significantly occurred in defects treated with OE-MSCs encapsulated hydrogels in vivo. As a result, OE-MSCs with suitable carriers could be used as an appropriate cell source to address clinical bone complications.

11.
SLAS Technol ; 26(4): 392-398, 2021 08.
Article in English | MEDLINE | ID: mdl-33645315

ABSTRACT

Undoubtedly, microfluidics has been a focal point of interdisciplinary science during the last two decades, resulting in many developments in this area. Centrifugal microfluidic platforms have good potential for use in point-of-care devices because they take advantage of some intrinsic forces, most notably centrifugal force, which obviates the need to any external driving forces. Herein, we introduce a newly designed detection chamber for use on microfluidic discs that can be employed as an absorbance readout step in cases where the final solution has a very low viscosity and surface tension. In such situations, our chamber easily eliminates the air bubbles from the final solution without any interruption. One microfluidic disc for measuring the hemoglobin concentration was designed and constructed to verify the correct functioning of this detection chamber. This disc measured the hemoglobin concentration of the blood samples via the HiCN method. Then, the hemoglobin concentration of 11 blood samples was quantified and compared with the clinic's data using the hemoglobin measurement disc, which included four hemoglobin measurement sets, and each set contained two inlets for the blood sample and the reagent, one two-part mixing chamber, and one bubble-free detection chamber. The measured values of the disc had good linearity and conformity compared with the clinic's data, and there were no air bubbles in the detection step. In this study, the standard deviation and the turnaround time were ± 0.51 g/dL and 68 s, respectively.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics , Hemoglobins , Point-of-Care Systems
12.
Sci Rep ; 11(1): 1565, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452407

ABSTRACT

Microfluidic on-chip production of microgels using external gelation can serve numerous applications that involve encapsulation of sensitive cargos. Nevertheless, on-chip production of microgels in microfluidic devices can be challenging due to problems induced by the rapid increase in precursor solution viscosity like clogging. Here, a novel design incorporating a step, which includes a sudden increase in cross-sectional area, before a flow-focusing nozzle was proposed for microfluidic droplet generators. Besides, a shielding oil phase was utilized to avoid the occurrence of emulsification and gelation stages simultaneously. The step which was located before the flow-focusing nozzle facilitated the full shielding of the dispersed phase due to 3-dimensional fluid flow in this geometry. The results showed that the microfluidic device was capable of generating highly monodispersed spherical droplets (CV < 2% for step and CV < 5% for flow-focusing nozzle) with an average diameter in the range of 90-190 µm, both in step and flow-focusing nozzle. Moreover, it was proved that the device could adequately create a shelter for the dispersed phase regardless of the droplet formation locus. The ability of this microfluidic device in the production of microgels was validated by creating alginate microgels (with an average diameter of ~ 100 µm) through an external gelation process with on-chip calcium chloride emulsion in mineral oil.

13.
Sci Rep ; 10(1): 11039, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32632169

ABSTRACT

Cell lysis is the most important first step for molecular biology and diagnostic testing. Recently, microfluidic systems have attracted considerable attention due to advantages associated with automation, integration and miniaturization, especially in resource-limited settings. In this work, novel centrifugal microfluidic platforms with new configurations for chemical cell lysis are presented. The developed systems employ passive form of pneumatic and inertial forces for effective mixing of lysis reagents and cell samples as well as precise fluidic control. Characterizations of the developed Lab-on-a-Discs (LoaDs) have been conducted with dyed deionized (DI) waters and white blood cells (WBCs) to demonstrate the suitability of the proposed systems in terms of mixing, fluidic control and chemical cell lysis. By making comparison between the results of a well-established manual protocol for chemical cell lysis and the proposed chemical cell lysis discs, it has been proved that the developed systems are capable of realizing automated cell lysis with high throughput in terms of proper values of average DNA yield (ranging from 20.6 to 29.8 ng/µl) and purity (ranging from 1.873 to 1.907) as well as suitability of the released DNA for polymerase chain reaction (PCR). By considering the manual chemical lysis protocol as a reference, the efficiency of the LoaDs has been determined 95.5% and 91% for 10 min and 5 min lysis time, respectively. The developed LoaDs provide simple, efficient, and fully automated chemical cell lysis units, which can be easily integrated into operational on-disc elements to obtain sample-to answer settings systems.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Cell Fractionation , Centrifugation , DNA/isolation & purification , Equipment Design , Humans , Leukocytes/chemistry , Microfluidic Analytical Techniques/instrumentation
14.
Bioelectrochemistry ; 128: 39-48, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30917333

ABSTRACT

The present study investigates the diversification and dynamic behavior of a multi-population microfluidic microbial fuel cell (MFC) as a biosensor. The cost effective microfluidic MFC coupled to a comprehensive model, presents a novel platform for monitoring chemical and biological phenomena. The importance of competition among different microbial groups, hierarchical biochemical processes, bacterial chemotaxis and different mechanisms of electron transfer were significant considerations in the present model. The validation of the model using experimental data from a microfluidic MFC shows an appropriate match with the hierarchal biodegradation processes of a complex substrate as well as development of bacterial chemotaxis during multi-population biofilm formation under real conditions. Microfluidic MFC performance, including temporal and spatial distribution of different microbial group concentrations in the biofilm and anolyte bulk, the competitive behavior of different species, bacterial transport parameters and bioelectrochemical characteristics are also assessed.


Subject(s)
Bioelectric Energy Sources , Biofilms , Electrochemical Techniques/methods , Microfluidics , Models, Biological , Chemotaxis
15.
Int J Biol Macromol ; 125: 383-391, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30537503

ABSTRACT

In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both increasing chit/col weight ratio and A-PRF concentration. Moreover, as chit/col weight ratio increased from 0 to 4 and A-PRF concentration decreased from 5 to 0, degradation rate of the membranes decreased from 90 to 20% after four weeks incubation. Finally, based on Design Expert Software calculation for minimizing the degradation rate and maximizing both Young's modulus and cell viability, the values of chit/col weight ratio and A-PRF concentration were suggested to be 4 and 0.58 mg/ml, respectively. Alkaline phosphatase (ALP) activity analysis showed that the addition of A-PRF caused higher osteogenic differentiation.


Subject(s)
Bone Regeneration , Chitosan , Collagen , Guided Tissue Regeneration , Membranes, Artificial , Platelet-Rich Fibrin , Animals , Biomarkers , Cell Survival , Freeze Drying , Guided Tissue Regeneration/methods , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Spectrum Analysis
16.
Toxicol Ind Health ; 32(7): 1302-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-25500758

ABSTRACT

In this study, concentrations of mercury (Hg) were analyzed in some marine biota species (fish, shrimp, and crab) from Khuzestan shore, north part of the Persian Gulf. It was also our intention to evaluate potential risks to human health associated with seafood consumption. The results indicated that concentrations of Hg in the fish and crustacean were different among the species and tissues. Liver in fish and hepatopancreas in crustacean exhibited higher Hg concentration than the other tissues. The highest concentration of Hg was detected in Acanthopagrus latus liver (1.37 µg/g), followed by Labeo rohita (0.87 µg/g), Johnius belangerii (0.79 µg/g), and Barbus grypus (0.69 µg/g), respectively. Also the highest Hg concentrations were detected in shrimp species, Penaeus semisulcatus hepatopancreas (0.95 µg/g), followed by blue crab Portunus pelagicus (0.76 µg/g) and Metapenaues affinis (0.64 µg/g), respectively. The comparison indicated that benthic species were more contaminated than were other pelagic species. The results indicated that highest concentrations of Hg between different stations were detected in Musa estuary. The Hg concentration in all species were low than standards, expect in A. latus and P. semisulcatus collected from Musa estuary (S4). The variation in Hg levels among the species is likely to have resulted from metal bioavailability, changes in tissue composition, habitat,s and locations.


Subject(s)
Brachyura/chemistry , Environmental Monitoring , Fishes , Mercury/analysis , Penaeidae/chemistry , Seafood/analysis , Animals , Brachyura/drug effects , Estuaries , Food Contamination/analysis , Indian Ocean , Iran , Liver/drug effects , Liver/metabolism , Muscles/drug effects , Muscles/metabolism , Penaeidae/drug effects , Vertebrates/classification , Vertebrates/metabolism , Water Pollutants, Chemical/analysis
17.
Math Biosci ; 258: 44-56, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25223232

ABSTRACT

The urine formation and excretion system have long been of interest for mathematicians and physiologists to elucidate the obscurities within the process happens in renal tissue. In this study, a novel three-dimensional approach is utilized for modeling the urine concentrating mechanism in rat renal outer medulla which is essentially focused on demonstrating the significance of tubule's architecture revealed in anatomic studies and physiological literature. Since nephrons and vasculatures work interdependently through a highly structured arrangement in outer medulla which is dominated by vascular bundles, a detailed functional unit is proposed based on this specific configuration. Furthermore, due to relatively lesser influence of vasa recta on interstitial medullary osmolality and osmotic gradients as well as model structure simplicity, central core assumption is employed. The model equations are based on three spatial dimensional mass, momentum and species transport equations as well as standard expressions for solutes and water transmural transport. Our model can simulate preferential interactions between different tubules and it is shown that such interactions promote solute cycling and subsequently, enhance urine-concentrating capability. The numerical results are well consistent with tissue slice experiments and moreover, our model predicts more corticomedullary osmolality gradient in outer medulla than previous influential 1-D simulations.


Subject(s)
Kidney Concentrating Ability/physiology , Kidney Medulla/physiology , Models, Biological , Animals , Rats
18.
J Biomech ; 44(1): 170-5, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-20887991

ABSTRACT

Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient. Results yielded significant enhancement of the particle diffusion, due to a micron-scale flow-field generated by red blood cell motions. By increasing the flow rate, the particle dispersion increased almost linearly under constant hematocrit levels. The particle dispersion also showed near linear dependency on hematocrit up to 20%. A scaling analysis of the results, on the assumption that the tracer trajectories were unbiased random walks, was shown to capture the main features of the results. The dispersion of tracer particles was about 0.7 times that of RBCs. These findings provide good insight into transport phenomena in the microcirculation and in biomedical microdevices.


Subject(s)
Erythrocytes/physiology , Microcirculation/physiology , Biomechanical Phenomena , Capillaries/physiology , Diffusion , Fluorescent Dyes , Hematocrit , Hemorheology , Humans , In Vitro Techniques , Microscopy, Confocal , Microscopy, Video , Models, Cardiovascular
SELECTION OF CITATIONS
SEARCH DETAIL
...