Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 72(9): 1578-87, 2015.
Article in English | MEDLINE | ID: mdl-26524449

ABSTRACT

We studied the nature and antimicrobial activity of ozonolysis transformation products (OTPs) of levofloxacin (LEV), a frequently detected fluoroquinolone antimicrobial in environmental waters. Two bioassays, the Kirby-Bauer test and the broth microdilution assay, were used to measure changes in the antimicrobial activity of solutions at low LEV to O3 molar ratios (2:1, 2:3 and 1:3) compared to solutions without added O3 (LEV:O3 1:0). The Kirby-Bauer test was not sensitive enough to detect significant differences in the growth inhibition zones in samples LEV:O3 2:1 and LEV:O3 1:0; however, the broth microdilution assay showed that bacterial growth inhibition was significantly lower (P<0.001) in the solutions exposed to O3. Loss of antimicrobial activity in LEV:O3 2:1 solutions of (48±16)% was in agreement with the concentration decrease of LEV of (36±3)% in those same samples. A method of identification of OTPs using XCMS Online was applied to LEV:O3 2:1 and 1:0 samples and indicated the presence of an OTP of LEV of formula C18H20O5N3F, which was identified as LEV-N-oxide. The molecular structure of this compound was partially confirmed by tandem mass spectrometry experiments. This study showed that even at sub-optimal ozone doses, OTPs of higher antimicrobial activity than LEV were not formed.


Subject(s)
Levofloxacin/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Anti-Infective Agents , Biological Assay , Carbamazepine , Fluoroquinolones , Levofloxacin/toxicity , Microbial Sensitivity Tests , Molecular Structure , Oxides , Software , Water
2.
Environ Int ; 80: 89-97, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25910860

ABSTRACT

The presence anti-infectives in environmental waters is of interest because of their potential role in the dissemination of anti-infective resistance in bacteria and other harmful effects on non-target species such as algae and shellfish. Since no information on global trends regarding the contamination caused by these bioactive substances is yet available, we decided to investigate the impact of income inequality between countries on the occurrence of anti-infectives in surface waters. In order to perform such study, we gathered concentration values reported in the peer-reviewed literature between 1998 and 2014 and built a database. To fill the gap of knowledge on occurrence of anti-infectives in African countries, we also collected 61 surface water samples from Ghana, Kenya, Mozambique and South Africa, and measured concentrations of 19 anti-infectives. A mixed one-way analysis of covariance (ANCOVA) model, followed by Turkey-Kramer post hoc tests was used to identify potential differences in anti-infective occurrence between countries grouped by income level (high, upper-middle and lower-middle and low income) according to the classification by the World Bank. Comparison of occurrence of anti-infectives according to income level revealed that concentrations of these substances in contaminated surface waters were significantly higher in low and lower-middle income countries (p=0.0001) but not in upper-middle income countries (p=0.0515) compared to high-income countries. We explained these results as the consequence of the absence of or limited sewage treatment performed in lower income countries. Furthermore, comparison of concentrations of low cost anti-infectives (sulfonamides and trimethoprim) and the more expensive macrolides between income groups suggest that the cost of these substances may have an impact on their environmental occurrence in lower income countries. Since wastewaters are the most important source of contamination of anti-infectives and other contaminants of emerging concern in the environment, it is expected that deleterious effects to the aquatic biota caused by these substances will be more pronounced in countries with inadequate wastewater and collection infrastructure. With the information currently available, we could not evaluate either the role of the receiving environment or the importance of regulatory frameworks on the occurrence of anti-infectives in surface waters. Future studies should focus on these two factors in order to better evaluate risks to aquatic ecosystems in LM&LICs. We propose that CECs such as anti-infectives could be used as a new class of environmental degradation indicators that could be helpful to assess the state of development of wastewater collection and treatment infrastructure around the world.


Subject(s)
Anti-Infective Agents/analysis , Environmental Monitoring/methods , Fresh Water/chemistry , Income , Social Conditions/economics , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Biota , Ecosystem , Environmental Monitoring/economics , Ghana , Mozambique , South Africa , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL